人工智能AI 技术一直被众多商业航天初创公司视为解锁在轨真正自主和管理日益拥挤的太空领域的关键。然而,尽管 像美国的Loft Orbital 等卫星运营商在将 AI 集成到其运营中方面取得了长足的进步,但整个行业的广泛采用仍处于早期阶段。
DeepSeek 的出现撼动了人工智能行业, DeepSeek其他生成式 AI 相比,能以明显较低的计算需求实现高性能,生成 AI 是一类深度学习模型,可分析大量数据集以生成内容、回答问题并根据学习模式推断可能的结果。
作为专注于AGI(通用人工智能)和先进AI技术的中国科技公司,其自身也在在商业航天领域具备广泛的应用潜力。为商业航天领域的人工智能解决方案带来了新的机会。虽然 DeepSeek 并不比其他生成式 AI 平台更强大,但它的主要突破在于它接受训练以与它们竞争的明显速度。这意味着用户可以在应用端利用Ai更快地解决问题。
DeepSeek在商业航天的核心价值在于“AI驱动的降本增效”,从数据挖掘到智能决策全链条赋能。短期可切入遥感数据分析与发射优化服务,长期布局自主航天器操作系统。需重点突破模型可靠性验证,并与航天硬件厂商建立生态合作,以应对国际竞争(如美国Kratos的AI卫星平台)。
这种效率对于带宽和机载处理能力有限的太空应用来说是一个关键优势。值得注意的是,DeepSeek 是开源的,将其定位为更广泛的 AI 创新的潜在催化剂。
如果 DeepSeek 能够在网络边缘或较小模型中高效运行,则可以使实时 AI 决策在自主卫星、深空勘探和其他资源受限的环境中更加可行。比如在卫星行业双向通信系统应用中——这些系统经过训练,并且有某种包装器,基本上定义了它们在看什么、做什么和处理什么——就可以开始进一步自动化系统。
DeepSeek Ai在商业航天领域的应用
商业航天领域包括卫星通信、火箭发射、空间探测、遥感等。未来DeepSeek Ai技术或将与这些领域深度结合,为全球商业航天和卫星系统提供更先进的应用场景。
首先,卫星数据处理。商业航天公司发射的卫星会传回大量遥感数据,比如气象、地质图像。DeepSeek的AI模型可以用于图像识别,自动分析地质结构、灾害预警等。比如,自动检测洪水或地震后的灾区情况,帮助快速响应。
然后是火箭发射优化。火箭发射需要大量数据模拟和实时监控。DeepSeek的AI可能在模拟测试中优化参数,比如燃料使用、轨道设计,降低成本。另外,实时数据分析可能预测故障,提高发射成功率。
航天器自主控制方面,AI可以用于在轨维护、避免碰撞等。比如,卫星自动调整轨道,避免太空垃圾,或者进行故障诊断,减少地面控制的工作量。
供应链和制造优化。商业航天涉及复杂供应链,AI可以优化生产流程,预测设备故障,管理库存,降低成本。例如,预测火箭零部件的需求,优化采购计划。
市场分析方面,DeepSeek可以分析行业趋势、竞争情报,帮助公司制定策略。比如,分析全球发射需求,建议市场进入策略。
虽然AI技术在商业航天领域应用市场前景非常广阔和乐观,但因为商业航天领域,火箭发射与卫星制造应用领域往往具有严格的数据安全与保密要求,DeepSeekAI模型在该领域的深度应用恐怕需要经过长期且严格的验证,才能真正实现安全、可靠且广泛的商业应用。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。