DeepSeek 定档2025 年 3 月 17 日发布其新一代 AI 模型——DeepSeek R2。作为中国 AI 初创公司的代表,DeepSeek 凭借其前作 R1 的惊人表现,已经在全球 AI 领域掀起了一场风暴。R2 的发布不仅引发了用户的广泛关注,更被视为可能重塑全球 AI 竞争格局的关键时刻。
一、DeepSeek 的崛起
DeepSeek 是一家成立于 2023 年的中国 AI 初创公司,总部位于杭州,由梁文锋创立。2025 年 1 月,DeepSeek R1 的发布震惊全球。这款模型以仅 560 万美元的训练成本,达到了与 OpenAI o1 相当的性能,涵盖数学、编码和推理任务。R1 的成功不仅让 DeepSeek 在技术上崭露头角,更在全球股市引发了 1 万亿美元的抛售,投资者开始重新评估 AI 行业的估值。
R1 的下载量在苹果 App Store 上迅速超越 ChatGPT,接近 200 万次,显示了其极高的市场接受度。而 R2 作为 R1 的升级版本,原定于 5 月初发布,但 DeepSeek 决定将发布日期提前至 2025 年 3 月 17 日,进一步加剧了市场的期待。
二、预期功能:R2 的四大亮点
1、 编码能力提升
R2 在代码生成和调试方面进行了显著优化,尤其在多语言编程支持上,从 R1 的 86 种语言扩展至 338 种。这将为开发者提供更准确的代码建议和错误修复,极大提升开发效率。
2、 多语言推理
R2 特别加强了非英语语言的推理能力,尤其是中文。这将改善翻译、问答和文化相关任务的性能,为中国用户提供更贴心的 AI 体验。
3、 成本效益
延续 R1 的低成本模式,R2 通过软件优化和可能的 GPU 储备,继续保持高效训练和推理。这种低成本策略不仅降低了技术门槛,还让更多中小企业和个人用户能够享受 AI 技术带来的便利。
4、 架构优化
R1 采用了混合专家(MoE)架构,拥有 6710 亿参数,但每次仅激活 370 亿。R2 可能沿用或进一步优化这一架构,提升计算效率,同时保持高性能。
三、R2 的本地化优势
1、本地化支持
作为一家中国公司,DeepSeek 更了解本地文化和语言需求。R2 的中文支持将极大提升教育、商业和日常应用的便利性。例如,学生可以用其完成中文作业,教师可以利用其生成教学内容。
2、成本优势
R2 的低成本模式将使 AI 技术更易于中国中小企业和个人用户采用,打破高昂的技术壁垒。R1 已经触发了中国 AI 模型价格战,R2 可能进一步推动这一趋势。
3、 生产力提升
在编程领域,R2 可帮助开发者更快完成项目;在商业上,可用于市场分析和客户服务;在日常生活中,可作为智能助手回答中文问题,全面提升效率。
4、 国家竞争力
R2 的成功可能增强中国在全球 AI 竞赛中的地位,尤其在面对美国出口限制的情况下,通过软件创新实现技术突破。
四、与其他模型的比较:R2 的竞争优势
R2 将与 OpenAI 的 o1、GPT-4.5 和 Google 的 Gemini 等顶尖模型展开竞争。根据 R1 的表现,R2 可能在编码和多语言推理上更具优势,尤其是在成本效益上。R1 已经与 OpenAI o1 在数学和推理任务上表现相当,R2 预计将进一步缩小差距,甚至在某些基准测试中领先。
与西方模型相比,R2 的低成本(训练成本可能仅为千万美元级别)使其更具吸引力,可能引发全球 AI 行业的重新评估。
五、结语:R2 将如何改变 AI 的未来?
DeepSeek R2 的发布不仅是中国 AI 技术的一次重大突破,更可能成为全球 AI 竞争格局的转折点。凭借其强大的功能、低成本优势和本地化支持,R2 有望为中国用户带来前所未有的 AI 体验,同时推动中国在全球 AI 领域的崛起。我们拭目以待,看 R2 如何改变 AI 的未来!
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。