大模型入门:私有化部署问答助手术语、工具和解决方案

chatbot with artificial intelligence

1、为什么是问答助手

目前的大语言模型,几乎都是以聊天的方式来和用户进行交互的,这也是为什么OpenAI开发的大模型产品叫ChatGPT,核心就是Chat。而我们基于大语言模型LLM落地应用,核心就是利用大模型的语义理解能力和推理能力,帮我们解决一些难以用“标准流程”去解决的问题,比如理解非结构化数据、分析推理、归纳总结等。

LLM真正的长处是它的理解、推理和对于问题的泛化能力,如果能把它运用到具体业务中,让它学习业务知识,则能发挥巨大的价值。目前绝大多数对大模型的应用,都是在尝试“教会”大模型特定领域知识,再基于大模型的泛化推理能力,去解决一些实际问题。运用的最多的就是知识问答场景和编程助手,比如智能客服、问答助手、Copilot、Cline、Cursor等。

大模型私有化部署时,工具的选择需结合应用场景性能需求、客观硬件条件、易用性及生态支持等多维度评估。以问答助手为例,大模型私有化部署可以分为前端和后端两部分,下面介绍当前主流工具和网站。

图片

2、API接口:LLM综合部署与服务管理工具

私有化部署时,我们首先要本地拉起一个大模型,通过API的形式提供给上层应用调用。下面是一些常用的LLM部署管理工具。

1. llama.cpp

llama.cpp是一个基于C/C++编写的开源推理框架,专为在本地CPU/GPU环境高效运行LLM大语言模型而设计。其核心目标是降低LLM的部署门槛,通过量化技术与硬件优化,实现在消费级设备(如笔记本电脑、树莓派甚至手机)上运行类ChatGPT模型。llama.cpp是本地运行LLM的“瑞士军刀”,凭借其高效性与跨平台能力,成为个人开发者和硬件受限场景的首选工具。对于追求开箱即用的用户,可结合Ollama或LM Studio简化操作

2. Ollama:适合快速验证测试性部署

Ollama是轻量级本地模型管理框架,基于llama.cpp进行封装,提供更友好的命令行体验和模型仓库,支持快速部署和运行主流开源模型(如Llama3、Qwen2、DeepSeek等)。Ollama需要使用命令行进行操作,命令风格与Docker/podman极其类似,如果之前就熟悉docker,可以做到无缝切换。

其主要特点有:

简化部署:Ollama目标在于简化在Docker容器中部署大语言模型的过程,使得非专业用户也能方便地管理和运行这些复杂的模型。

轻量级与可扩展:作为轻量级框架,Ollama保持了较小的资源占用,同时具备良好的可扩展性,允许用户根据需要调整配置以适应不同规模的项目和硬件条件。

3. LM Studio:适合非技术用户

LM Studio无需复杂命令行操作,前后端集成,是最简单的本地测试AI模型的工具,不需要安装python环境以及众多的组件,加载模型、启用GPU、聊天都非常简单。而且可以切换很多不同类型的大语言模型,同时支持在Windows和MAC上的PC端部署。使用LM Studio不需要深厚的技术背景或复杂的安装过程。

4. vLLM:企业级高性能推理框架

vLLM是一个专注于高效推理和服务的大模型库,由加州大学伯克利分校的研究团队开发,专为GPU高并发设计,性能优于llama.cpp。它采用了一种称为PagedAttention的技术,优化了显存管理,特别适合高并发场景,例如部署大模型API服务(如智能客服、内容生成平台),需要处理大量并发请求。非企业专业用户一般用不到。

3、UI界面:应用开发与集成平台

部署完私有化LLM大模型及其服务管理工具,已经能通过API的形式对外提供服务了。但是对于私有化部署来说,我们需要定制化实现私有知识库,比如通过RAG、工作流、插件、函数库等功能,构建具有实现本地定制化、完成特定的任务的应用。

因此,下一步需要有一个开发平台,建立本地知识库,提供RAG、联网搜索、工作流、用户管理、审计功能、可观测性等功能的总和应用开发与集成平台。下面列举具有此类功能的常用产品。

1. MaxKB

img

MaxKB(https://maxkb.cn)是一款基于大语言模型和RAG的开源知识库问答系统,专注知识库问答系统,支持本地化部署与RAG优化,广泛应用于智能客服、企业内部知识库、学术研究与教育等场景,是一款专注于知识库问答场景的软件产品。

2. Dify

img

Dify(https://dify.ai)是一款低代码可视化AI应用开发平台(智能体平台),支持知识库与模型服务私有化部署。支持多模型混合编排(本地+云端API),内置50+Agent工具链。提供RAG流程设计、知识库管理和LLMOps监控功能。开源版本支持私有化部署,适合低代码开发,适用于企业快速构建AI应用(如智能客服)。

img

3. AnythingLLM

img

企业级文档问答专用平台,支持多工作区权限管理,内置文档分块和向量化存储,数据完全本地化,适合敏感信息处理,但是复杂问题回答深度不足。而且是英文环境,对国内用户使用不是很友好。

4. FastGPT

img

FastGPT是一个功能强大的平台,专注于知识库嵌入和自动化工作流程的编排。它提供了一个简单易用的可视化界面,支持自动数据预处理和基于Flow模块的工作流编排。FastGPT支持创建RAG系统,提供自动化工作流程等功能,使得构建和使用RAG系统变得简单,无需编写复杂代码。

5. RAGFlow

img

RAGFlow(https://ragflow.io/)是一款基于深度文档理解构建的开源RAG(Retrieval-Augmented Generation)引擎。RAGFlow可以为各种规模的企业及个人提供一套精简的RAG工作流程,结合大语言模型(LLM)针对用户各类不同的复杂格式数据提供可靠的问答以及有理有据的引用。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值