计算DeepSeekV3训练的MFU

本文利用公开信息推导得到DeepSeekV3训练时候的MFU为37%左右,相比V2的MFU提升大概60%,希望对后续技术讨论提供数据支撑。

自2024年12月发布以来,DeepSeekV3在人工智能领域引发了广泛关注。该模型不仅被国内三大顶会公众号上连篇累牍报道,更在海外社交媒体平台X等渠道引发热议。其关键因素之一在于突破性的训练成本控制——仅用557万美元便训练出了性能达到SOTA水平的模型。这一成就不仅引发业界对AI模型训练成本效益的重新思考,更延伸出对美国对华技术出口管制政策有效性的讨论,甚至影响到投资者对英伟达股价走势的判断。

神秘的幻方公司,加之某热点人物跳槽的花边,DeepSeekV3目前俨然成为舆论焦点,其影响力已远远超出技术领域,被置于中美科技博弈、中国创新实力等宏观议题中深入探讨。随着讨论不断发酵,从科技从业者到政策研究者,从资本市场到普通网民,越来越多群体加入这场大讨论,使得DeepSeekV3相关话题持续升温,形成了一场跨领域、多维度的全民热议。

低训练成本是DeepSeekV3独树一帜的特征,也是一时激起千层浪的根源。为什么DeepSeekV3能把成本打下来,网络上已经有大量的分析。

第一,是模型架构设计,通过采用MoE结构,尽管参数有671B但是激活只有37B。

第二,是高效的训练框架(幻方自研的HAI-LLM),创新性地采用了多种高超的工程优化技巧,包括流水线并行,FP8量化,通信计算隐藏等。

模型本身的作用是无可争议的,而训练框架的效率则成为学界和业界关注的焦点。然而,作为衡量训练框架运行效率的核心指标,MFU(Model FLOPs Utilization)却长期被忽视——无论是在技术文献还是公众讨论中,都鲜少被提及,这是让人非常遗憾的。基于此,本文试图通过公开数据,尝试对DeepSeekV3的训练MFU进行系统性测算,旨在为后续的学术研究和行业讨论提供一个可靠的基准参考。

⚠️ 本文可能纰漏,希望大家一起指点改正,集思广益,把MFU算精准。

技术报告和模型开源代码中已经包含了足够的信息,让我们能够计算出精确MFU。方法是计算每个token训练是需要的FLOP数目,然后乘以总的token数,除以总的GPU hours即可得到MFU。

问题的核心是每个token的FLOP数目,它主要包含了MLA部分和MoE部分,Embedding和LM head等非主干部分也占很小一部分。

1. 参数说明

dim = 7168inter_dim = 18432moe_inter_dim = 2048n_layers = 61n_dense_layers = 3n_heads = 128n_routed_experts = 256n_shared_experts = 1n_activated_experts = 8q_lora_rank = 1536kv_lora_rank = 512qk_nope_head_dim = 128qk_rope_head_dim = 64v_head_dim = 128

2. MLA的forward的FLOP

先规定:qk_head_dim = args.qk_nope_head_dim + args.qk_rope_head_dim

2.1 Q down+up pro:

flops = 2 * bs * seq_len * args.dim * args.q_lora_rank flops += 2 * bs * seq_len * args.q_lora_rank * args.n_heads * args.qk_head_dim

2.2 KV down proj:

flops += 2 * bs * seq_len * args.dim * (args.kv_lora_rank + args.qk_rope_head_dim)

2.3 KV up proj:

flops += 2 * bs * seq_len * args.kv_lora_rank * args.n_heads * (args.qk_nope_head_dim + args.v_head_dim)

2.4 score (Q x K^T): 由于是causal要/2

flops += 2 * bs * seq_len * seq_len * args.n_heads * args.qk_head_dim / 2

2.5 score x V: 由于是causal要/2

flops += 2 * bs * seq_len * seq_len * args.n_heads * args.v_head_dim / 2

2.6 Wo:

flops += 2 * bs * seq_len * args.n_heads * args.v_head_dim * args.dim

3. MoE的forward FLOP

flops += 2 * bs * seq_len * args.dim * args.moe_inter_dim * 3 flops += 2 * bs * seq_len * args.moe_inter_dim

4. MLP的forward FLOP

flops = 2 * bs * seq_len * args.dim * args.inter_dim * 3 flops += 2 * bs * seq_len * args.inter_dim

5. embedding的forward FLOPS

flops = 2 * bs * seq_len * args.dim

6. lm head的forward FLOPS

这里只算一个head情况,先不考虑MTP

flops = 2 * bs * seq_len * args.dim * args.vocab_size

7. MFU计算

按照backward计算FLOP是forward的2倍来计算,注意这里不把attn反向的重计算当成有效flops。

V3总共有61层,前3层用MLP,后58层用MoE来计算。另外每个token激活9(1个share+8个router)MoE Expert。context length按照4K估算。H100_peak_bf16_flops按照989.5 Tflops算(感谢 @Quokka 指正)

我们可以得到flops_per_1T_tokens。然后按照如下公式可以算出MFU:

gpu_hours = 2.664 * 3600 / 1024

MFU = flops_per_1T_tokens * 14.8 / (gpu_hours * H100_peak_bf16_flops)

代码我放在如下仓库中:

https://github.com/feifeibear/DPSKV3MFU/blob/main/dpskv3_flops.py

计算得到的MFU是37.2%

@菽陌松囿 提出6ND+attn估算法:

按照2.4和2.5算attn_flosp。

MFU_ref = (37 * 6 + 3 * attn_flops * 61) * 14.8 / (gpu_hours * H100_peak_bf16_flops)

估算得到的MFU_ref是40.0%。笔者认为这一个偏高的估计,比如embedding层按参数算flops就不准确了,偏高很多。

⚠️ @233 大佬指出上述计算存在进制不一致问题。我们重新校准

H100_peak_bf16_flops=989.5 TFlops,其实是989.5*1000 MFlops,那我们重新校准:

H100_peak_bf16_flops=989.5 * 1000 / 1024来计算,我们重新校准:

也就是2.664M GPU hours中的M按照1e6来计算:

gpu_hours = 2.664 * 3600 / 1024 / 1e6 * 1024**2

这样所有T和B的单位都是1024了:

如此计算得到的MFU是36.2%。估算得到的MFU是39.0%,这样MFU稍微低了一些。

8. DeepSeek V3和V2的MFU对比

我们顺便对比一下V3相比V2的MFU提升,鉴于两个模型应该是在同一个集群上训练,MFU的差异可以反应技术报告中框架优化的效果。简单期间,我们这次就用参数估算方法。

DeepSeek V3的MFU正比于37(B)*14.8(T)/2.788M(GPU hours) = 196

与之对比,半年前在同一集群完成训练的DeepSeek V2的MFU正比于21(B)/0.1728M(GPU hours Per 1T tokens) = 121

DeepSeek的Infra团队半年内提效196/121 = 61%。

按照2美金一个 H800 GPU hours租金来算,2K卡集群的一个月租金为2000万RMB,DeepSeek Infra团队相当于每个月赚1200万RMB

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值