Pytorch深度学习实战3-6:详解网络骨架模块nn.Module(附实例)

本文介绍了Pytorch中用于自定义模型的核心类nn.Module,包括其作用、如何自定义网络、主要方法及自定义网络的一般步骤。通过实例展示了如何创建感知机和卷积神经网络,帮助读者理解nn.Module在构建复杂模型中的应用。
摘要由CSDN通过智能技术生成

1 什么是nn.Module?

在实际应用过程中,经典网络结构(如卷积神经网络)往往不能满足我们的需求,因而大多数时候都需要自定义模型,比如:多输入多输出(MIMO)多分支模型跨层连接模型等。nn.Module就是Pytorch中用于自定义模型的核心方法。在Pytorch中,自定义层、自定义块、自定义模型,都是通过继承nn.Module类完成的。

nn.Module的定义如下

class Module(object):
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mr.Winter`

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值