路径规划 | 图解RRT-Connect算法(附ROS C++/Python/Matlab仿真)

本文介绍了RRT-Connect算法的基本原理,对比了与RRT的区别,并提供了ROS C++、Python和Matlab的实现示例。该算法在路径规划中表现出更高效的搜索速度和更好的全局规划性能,适用于自动驾驶和机器人运动规划。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0 专栏介绍

🔥附C++/Python/Matlab全套代码🔥课程设计、毕业设计、创新竞赛必备!详细介绍全局规划(图搜索、采样法、智能算法等);局部规划(DWA、APF等);曲线优化(贝塞尔曲线、B样条曲线等)。

🚀详情:图解自动驾驶中的运动规划(Motion Planning),附几十种规划算法


1 RRT-Connect基本原理

在原始RRT算法中,终点附近的区域信息并不能得到有效利用,为了解决这个问题,可以分别以起点和终点为根节点进行双搜索树双向扩展,当两棵树建立连接时可回溯可行路径,称为RRT-Connect算法

在这里插入图片描述

评论 28
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mr.Winter`

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值