Modern Robotics串联机器人常见的奇异构型

Modern Robotics串联机器人常见的奇异构型

奇异点的数学定义

机器人末端执行器失去瞬间向一个或多个方向移动的能力时的姿态称为运动学奇异点(kinematic singularity), 或简称奇异点(singularity)。雅可比矩阵使我们能够识别的奇异点。从数学角度看,一个奇异点在雅可比 J b ( θ ) J_b(\theta) Jb(θ)不能达到最大秩的构型。考虑物体雅可比,列用 J b i , i = 1 , . . . , n J_{bi},i=1,...,n Jbi,i=1,...,n表示,那么有
V b = [ J b 1 ( θ ) ⋯ J b n − 1 ( θ ) J b n ] [ θ ˙ 1 ⋮ θ ˙ n − 1 θ ˙ n ] = J b 1 ( θ ) θ ˙ 1 + ⋯ + J b n − 1 ( θ ) θ ˙ n − 1 + J b n θ ˙ n \mathcal V_{b}=\left[\begin{matrix} J_{b1}(\theta)& \cdots&J_{bn-1}(\theta)&J_{bn}\end{matrix} \right] \left[\begin{matrix} \dot \theta_1\\ \vdots \\ \dot\theta_{n-1}\\ \dot\theta_n \end{matrix}\right]\\ =J_{b1}(\theta)\dot\theta_1+\cdots+J_{bn-1}(\theta)\dot\theta_{n-1}+J_{bn}\dot\theta_n Vb=[Jb1(θ)Jbn1(θ)Jbn]θ˙1θ˙n1θ˙n=Jb1(θ)θ˙1++Jbn1(θ)θ˙n1+Jbnθ˙n
因此末端坐标系的旋量是雅可比矩阵的列 J b i J_{bi} Jbi的线性组合.只有 n ≥ 6 n\ge 6 n6,雅可比 J b ( θ ) J_b(\theta) Jb(θ)的最大秩就是6.

奇异点与选择物体雅可比还是空间雅可比无关,与固定坐标系和物体坐标系的选择也无关。因为物体雅可比和空间雅可比之间是伴随映射段关系, J s ( θ ) = A d T s b ( J b ( θ ) ) = [ A d T s b ] J b ( θ ) J_s(\theta)=Ad_{T_{sb}}(J_b(\theta))=[Ad_{T_{sb}}]J_b(\theta) Js(θ)=AdTsb(Jb(θ))=[AdTsb]Jb(θ), 即
J s ( θ ) = [ R s b 0 [ p s b ] R s b R s b ] J b ( θ ) . J_s(\theta)=\left[\begin{matrix} R_{sb}&0\\ [p_{sb}]R_{sb}&R_{sb} \end{matrix}\right]J_{b}(\theta). Js(θ)=[Rsb[psb]Rsb0Rsb]Jb(θ).
由于 [ A d T s b ] [Ad_{T_{sb}}] [AdTsb]总是可逆的,因此 J b ( θ ) J_b(\theta) Jb(θ) J b ( θ ) J_b(\theta) Jb(θ)的秩总是相等的。

6自由度串联机器人常见的奇异构型

下面我们列出由旋转关节(revolute joint)和平移关节(prismatic joint)组成的6自由度串联机械臂常见的奇异构型。

(1)两个旋转关节共线

在这里插入图片描述

若存在两个关节轴线共线,我们把这两个关节编号为1和2,对应的雅可比的列为
J s 1 ( θ ) = [ ω s 1 − ω s 1 × q 1 ] , J s 2 ( θ ) = [ ω s 2 − ω s 2 × q 2 ] . J_{s1}(\theta)=\left[\begin{matrix} \omega_{s1}\\ -\omega_{s1}\times q_1 \end{matrix}\right], J_{s2}(\theta)=\left[\begin{matrix} \omega_{s2}\\ -\omega_{s2}\times q_2 \end{matrix}\right]. Js1(θ)=[ωs1ωs1×q1],Js2(θ)=[ωs2ωs2×q2].
由于两个关节轴线是共线的,必有 ω s 1 = ± ω s 2 \omega_{s1}=\pm \omega_{s2} ωs1=±ωs2,我们不妨取 ω s 1 = ω s 2 \omega_{s1}= \omega_{s2} ωs1=ωs2 同时对任意i, ω s i × ( q 1 − q 2 ) = 0 \omega_{si}\times (q_1-q_2)=0 ωsi×(q1q2)=0, 因此有 J s 1 = J s 2 J_{s1}=J_{s2} Js1=Js2 。列向量 { J s 1 , J s 2 , … , J s 6 } \{J_{s1},J_{s2},\dots,J_{s6}\} {Js1,Js2,,Js6}不可能线性无关,因此, J s ( θ ) J_s(\theta) Js(θ)的秩必定小于6. 对应后面的几种情形,同样可以用雅可比矩阵进行辨别出其奇异性。

(2)3个旋转关节轴线共面且平行

在这里插入图片描述

(3)4个旋转关节轴线相交于同一点

在这里插入图片描述

(4)四个旋转关节轴线共面

在这里插入图片描述

(5)6个关节轴线相交于同一条线

小结

在机器人控制上来说,就意味着,一旦出现奇异,你就不能随意控制你的机器人朝着你想要的方向前进了。这也就是前面所谓的自由度退化、逆运动学无解。

解决办法:

1.在规划路径中尽可能的避免机器人经过奇异点。

2.结合机器人运动学,优化机器人反解算法,确保在奇异点附近伪逆解的稳定性 。


参考资料

[1] Kenvin M. Lynch , Frank C. Park, Modern Robotics Mechanics,Planning , and Control. May 3, 2017

[2] https://blog.csdn.net/qq_19390445/article/details/86480421

  • 2
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Galaxy_Robot

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值