01、改进YOLOv11--在yolov11中增加 SE 注意力

1.在conv.py中添加SE代码,如下图所示:

下面是class SE的代码

class SE(nn.Module):
    def __init__(self, c1, c2, r=16):
        super(SE, self).__init__()
        self.avgpool = nn.AdaptiveAvgPool2d(1)
        self.l1 = nn.Linear(c1, c1 // r, bias=False)
        self.relu = nn.ReLU(inplace=True)
        self.l2 = nn.Linear(c1 // r, c1, bias=False)
        self.sig = nn.Sigmoid()
    def forward(self, x):
        print(x.size())
        b, c, _, _ = x.size()
        y = self.avgpool(x).view(b, c)
        y = self.l1(y)
        y = self.relu(y)
        y = self.l2(y)
        y = self.sig(y)
        y = y.view(b, c, 1, 1)
        return x * y.expand_as(x)

2.在__inint__.py中导入

3.在tasks.py中导入

4.新建yolo11_GaiJin.yaml,设置训练网络的结构,SE是即插即用的,可以自行调整位置,设置好通道数和前后层数设置对就行。

# Ultralytics YOLO 馃殌, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs

# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 2, C3k2, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 2, C3k2, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 2, C3k2, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 2, C3k2, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 2, SE, [1024]] # 10
  - [-1, 2, C2PSA, [1024]] # 11

# YOLO11n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2, [512, False]] # 14

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [256, False]] # 17 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 14], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [512, False]] # 20 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 11], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 23 (P5/32-large)

  - [[17, 20, 23], 1, Detect, [nc]] # Detect(P3, P4, P5)

5.运行,新建train.py,然后运行测试
 

# -*- coding: utf-8 -*-
# 模型配置文件
model_yaml_path = r"ultralytics-main/ultralytics/cfg/models/11/yolo11_GaiJin.yaml"
# 数据集配置文件
data_yaml_path = r"ultralytics-main/data/data.yaml"
# 预训练模型
#pre_model_name = r"ultralytics-main/weight/best.pt"

import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLO

if __name__ == '__main__':
    model = YOLO(model_yaml_path)
    #model.load(pre_model_name)
    
    # 训练模型
    model.train(data=data_yaml_path,  # 数据集路径
                epochs=100,  # 训练轮数
                patience=50,  # 早停策略的轮数
                batch=4,  # 每批图像数量
                imgsz=640,  # 输入图像大小
                save=True,  # 是否保存训练检查点
                save_period=-1,  # 每多少轮保存一次检查点
                cache=False,  # 是否使用缓存加载数据
                workers=8,  # 数据加载工作线程数
                device=2,   # 显卡编号 
                project='runs/train',  # 项目名称
                name='exp',  # 实验名称
                exist_ok=False,  # 是否覆盖现有实验
                pretrained=False,  # 是否使用预训练模型
                optimizer='SGD',  # 优化器
                verbose=True,  # 是否打印详细信息
                seed=0,  # 随机种子
                deterministic=True,  # 是否启用确定性模式
                single_cls=False,  # 是否将多类数据作为单类训练
                rect=False,  # 是否使用矩形训练
                cos_lr=False,  # 是否使用余弦学习率调度器
                close_mosaic=10,  # 禁用马赛克数据增强的轮数
                resume=False,  # 是否从最后检查点恢复训练
                amp=True,  # 是否使用自动混合精度训练
                fraction=1.0,  # 训练数据集的比例
                val=True,  # 是否在训练中进行验证
                split='val',  # 用于验证的数据集分割
                save_json=False,  # 是否保存结果为JSON文件
                save_hybrid=False,  # 是否保存混合版本的标签
                iou=0.7,  # NMS的IoU阈值
                max_det=300,  # 每张图像的最大检测数量
                half=False,  # 是否使用半精度
                dnn=False,  # 是否使用OpenCV DNN进行ONNX推理
                plots=True,  # 是否在训练/验证过程中保存图表和图像
                )


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值