1.在conv.py中添加SE代码,如下图所示:
下面是class SE的代码
class SE(nn.Module):
def __init__(self, c1, c2, r=16):
super(SE, self).__init__()
self.avgpool = nn.AdaptiveAvgPool2d(1)
self.l1 = nn.Linear(c1, c1 // r, bias=False)
self.relu = nn.ReLU(inplace=True)
self.l2 = nn.Linear(c1 // r, c1, bias=False)
self.sig = nn.Sigmoid()
def forward(self, x):
print(x.size())
b, c, _, _ = x.size()
y = self.avgpool(x).view(b, c)
y = self.l1(y)
y = self.relu(y)
y = self.l2(y)
y = self.sig(y)
y = y.view(b, c, 1, 1)
return x * y.expand_as(x)
2.在__inint__.py中导入
3.在tasks.py中导入
4.新建yolo11_GaiJin.yaml,设置训练网络的结构,SE是即插即用的,可以自行调整位置,设置好通道数和前后层数设置对就行。
# Ultralytics YOLO 馃殌, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
# YOLO11n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 2, C3k2, [256, False, 0.25]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 2, C3k2, [512, False, 0.25]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 2, C3k2, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 2, C3k2, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 9
- [-1, 2, SE, [1024]] # 10
- [-1, 2, C2PSA, [1024]] # 11
# YOLO11n head
head:
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 2, C3k2, [512, False]] # 14
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3k2, [256, False]] # 17 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 14], 1, Concat, [1]] # cat head P4
- [-1, 2, C3k2, [512, False]] # 20 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 11], 1, Concat, [1]] # cat head P5
- [-1, 2, C3k2, [1024, True]] # 23 (P5/32-large)
- [[17, 20, 23], 1, Detect, [nc]] # Detect(P3, P4, P5)
5.运行,新建train.py,然后运行测试
# -*- coding: utf-8 -*-
# 模型配置文件
model_yaml_path = r"ultralytics-main/ultralytics/cfg/models/11/yolo11_GaiJin.yaml"
# 数据集配置文件
data_yaml_path = r"ultralytics-main/data/data.yaml"
# 预训练模型
#pre_model_name = r"ultralytics-main/weight/best.pt"
import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLO
if __name__ == '__main__':
model = YOLO(model_yaml_path)
#model.load(pre_model_name)
# 训练模型
model.train(data=data_yaml_path, # 数据集路径
epochs=100, # 训练轮数
patience=50, # 早停策略的轮数
batch=4, # 每批图像数量
imgsz=640, # 输入图像大小
save=True, # 是否保存训练检查点
save_period=-1, # 每多少轮保存一次检查点
cache=False, # 是否使用缓存加载数据
workers=8, # 数据加载工作线程数
device=2, # 显卡编号
project='runs/train', # 项目名称
name='exp', # 实验名称
exist_ok=False, # 是否覆盖现有实验
pretrained=False, # 是否使用预训练模型
optimizer='SGD', # 优化器
verbose=True, # 是否打印详细信息
seed=0, # 随机种子
deterministic=True, # 是否启用确定性模式
single_cls=False, # 是否将多类数据作为单类训练
rect=False, # 是否使用矩形训练
cos_lr=False, # 是否使用余弦学习率调度器
close_mosaic=10, # 禁用马赛克数据增强的轮数
resume=False, # 是否从最后检查点恢复训练
amp=True, # 是否使用自动混合精度训练
fraction=1.0, # 训练数据集的比例
val=True, # 是否在训练中进行验证
split='val', # 用于验证的数据集分割
save_json=False, # 是否保存结果为JSON文件
save_hybrid=False, # 是否保存混合版本的标签
iou=0.7, # NMS的IoU阈值
max_det=300, # 每张图像的最大检测数量
half=False, # 是否使用半精度
dnn=False, # 是否使用OpenCV DNN进行ONNX推理
plots=True, # 是否在训练/验证过程中保存图表和图像
)