R语言机器学习算法实战系列(三)lightGBM算法分类器+SHAP值(Light Gradient Boosting Machine)

禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!
在这里插入图片描述

介绍

LightGBM(Light Gradient Boosting Machine)是一款基于决策树算法的分布式梯度提升框架,由微软开发。它的设计初衷是为了提供一个快速高效、低内存占用、高准确度、支持并行和大规模数据处理的数据科学工具。

原理:

  1. 基于Histogram的决策树算法:LightGBM使用直方图算法来构建决策树,这种方法先将连续的浮点特征值离散化成k个整数,然后构造一个宽度为k的直方图。这种方法减少了数据预排序的需要,降低了内存消耗,并且提高了计算效率。
  2. 带深度限制的Leaf-wise算法:大多数GBDT工具使用按层生长(level-wise)的策略,而LightGBM采用了带有深度限制的按叶子生长(leaf-wise)算法。这种策略每次从当前所有叶子中找到分裂增益最大的一个叶子进行分裂,提高了效率,但也可能增加过拟合的风险,因此引入了最大
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生信学习者1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值