R语言机器学习算法实战系列(十五)随机森林生存预后模型+SHAP值 (Random Survival Forest + SHAP)

禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!

在这里插入图片描述

介绍

随机森林生存分析(Random Survival Forest,简称RSF)是一种用于处理右删失数据(即生存时间数据)的机器学习方法,它是传统随机森林算法在生存分析领域的扩展。RSF的目标变量是生存时间,它考虑了每个样本的生存时间(T)和删失时间(C),其中删失时间指的是在观察期间内未发生感兴趣事件的时间。RSF框架的核心步骤包括:

  1. 数据重采样:从原始数据中抽取多个bootstrap样本,每个样本平均排除一定比例的数据,称为袋外数据(Out-Of-Bag, OOB)。
  2. 构建生存树:对每个bootstrap样本构建一棵二叉生存树。在树的每个节点上,随机选取一定数量的候选变量,并使用最大化子节点之间生存差异的候选变量进行拆分。
  3. 生长限制:在
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生信学习者1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值