Gamma分布

本篇笔记内容来源
概率论与数理统计教程(第三版) 茆诗松 高等教育出版社
数理统计学导论(原书第7版) 机械工业出版社


∫ 0 ∞ 1 Γ ( α ) β α x α − 1 e − x β d x = 1 \int^\infty_{0}\frac{1}{\Gamma(\alpha)\beta^{\alpha}}x^{\alpha-1}e^{-\frac{x}{\beta}}\mathrm{d}x=1 0Γ(α)βα1xα1eβxdx=1 的来源

在数学分析中已经证明,对于 α > 0 \alpha>0 α>0 ,积分

∫ 0 ∞ y α − 1 e − y d y \int^\infty_0y^{\alpha-1}e^{-y}\mathrm{d}y 0yα1eydy

存在,且此积分值是正数. 称此积分为 α > 0 \alpha>0 α>0 的伽马函数,写成

Γ ( α ) = ∫ 0 ∞ y α − 1 e − y d y \Gamma(\alpha)=\int^\infty_0y^{\alpha-1}e^{-y}\mathrm{d}y Γ(α)=0yα1eydy

通过 y = x β y=\frac{x}{\beta} y=βx 引入新变量,得

Γ ( α ) = ∫ 0 ∞ ( x β ) α − 1 e − x β ( 1 β ) d x \Gamma(\alpha)=\int^\infty_0(\frac{x}{\beta})^{\alpha-1}e^{-\frac{x}{\beta}}(\frac{1}{\beta})\mathrm{d}x Γ(α)=0(βx)α1eβx(β1)dx

整理后,得

1 = ∫ 0 ∞ 1 Γ ( α ) β α x α − 1 e − x β d x 1=\int^\infty_{0}\frac{1}{\Gamma(\alpha)\beta^{\alpha}}x^{\alpha-1}e^{-\frac{x}{\beta}}\mathrm{d}x 1=0Γ(α)βα1xα1eβxdx


概率密度函数pdf

f ( x ) = { 1 Γ ( α ) β α x α − 1 e − x β ,   0 < x < ∞ 0 ,  其他 f(x)= \begin{cases} \frac{1}{\Gamma(\alpha)\beta^\alpha}x^{\alpha-1}e^{-\frac{x}{\beta}},&\ 0<x<\infty\\ 0,&\ 其他 \end{cases} f(x)={Γ(α)βα1xα1eβx,0, 0<x< 其他

Γ ( α , β ) \Gamma(\alpha,\beta) Γ(α,β) α \alpha α 称为形状参数, β \beta β 称为反尺度参数.

存在另一种表述: G a ( α , λ ) Ga(\alpha,\lambda) Ga(α,λ). 其中 α \alpha α 仍为形状参数, λ \lambda λ 为尺度参数且 λ = 1 β \lambda=\frac{1}{\beta} λ=β1

G a ( α , λ ) = Γ ( α , 1 β ) Ga(\alpha,\lambda)=\Gamma(\alpha,\frac{1}{\beta}) Ga(α,λ)=Γ(α,β1)


期望 μ \mu μ

就是往 ∫ 0 ∞ 1 Γ ( α ) β α x α − 1 e − x β d x = 1 \int^\infty_{0}\frac{1}{\Gamma(\alpha)\beta^{\alpha}}x^{\alpha-1}e^{-\frac{x}{\beta}}\mathrm{d}x=1 0Γ(α)βα1xα1eβxdx=1 上面凑

还有伽马函数的性质 Γ ( α + 1 ) = α Γ ( α ) \Gamma(\alpha+1)=\alpha\Gamma(\alpha) Γ(α+1)=αΓ(α)

E ( X ) = ∫ 0 ∞ x 1 Γ ( α ) β α x α − 1 e − x β d x = β ∫ 0 ∞ 1 Γ ( α ) β α + 1 x α e − x β d x = α β ∫ 0 ∞ 1 Γ ( α + 1 ) β α + 1 x α e − x β d x = α β \begin{align*} E(X)&=\int^\infty_{0}x\frac{1}{\Gamma(\alpha)\beta^\alpha}x^{\alpha-1}e^{-\frac{x}{\beta}}\mathrm{d}x\\ &=\beta\int^\infty_{0}\frac{1}{\Gamma(\alpha)\beta^{\alpha+1}}x^{\alpha}e^{-\frac{x}{\beta}}\mathrm{d}x\\ &=\alpha\beta\int^\infty_{0}\frac{1}{\Gamma(\alpha+1)\beta^{\alpha+1}}x^{\alpha}e^{-\frac{x}{\beta}}\mathrm{d}x\\ &=\alpha\beta \end{align*} E(X)=0xΓ(α)βα1xα1eβxdx=β0Γ(α)βα+11xαeβxdx=αβ0Γ(α+1)βα+11xαeβxdx=αβ


方差 σ 2 \sigma^2 σ2

先求 E ( X 2 ) E(X^2) E(X2),思路跟求期望一样,凑就对了

E ( X 2 ) = ∫ 0 ∞ x 2 1 Γ ( α ) β α x α − 1 e − x β d x = ∫ 0 ∞ 1 Γ ( α ) β α x α + 1 e − x β d x = β 2 ∫ 0 ∞ 1 Γ ( α ) β α + 2 x α + 1 e − x β d x = β 2 α ( α + 1 ) ∫ 0 ∞ 1 Γ ( α + 2 ) β α + 2 x α + 1 e − x β d x = β 2 α ( α + 1 ) \begin{align*} E(X^2)&=\int^\infty_{0}x^2\frac{1}{\Gamma(\alpha)\beta^\alpha}x^{\alpha-1}e^{-\frac{x}{\beta}}\mathrm{d}x\\ &=\int^\infty_{0}\frac{1}{\Gamma(\alpha)\beta^{\alpha}}x^{\alpha+1}e^{-\frac{x}{\beta}}\mathrm{d}x\\ &=\beta^2\int^\infty_{0}\frac{1}{\Gamma(\alpha)\beta^{\alpha+2}}x^{\alpha+1}e^{-\frac{x}{\beta}}\mathrm{d}x\\ &=\beta^2\alpha(\alpha+1)\int^\infty_{0}\frac{1}{\Gamma(\alpha+2)\beta^{\alpha+2}}x^{\alpha+1}e^{-\frac{x}{\beta}}\mathrm{d}x\\ &=\beta^2\alpha(\alpha+1) \end{align*} E(X2)=0x2Γ(α)βα1xα1eβxdx=0Γ(α)βα1xα+1eβxdx=β20Γ(α)βα+21xα+1eβxdx=β2α(α+1)0Γ(α+2)βα+21xα+1eβxdx=β2α(α+1)

方差为

V a r ( X ) = E ( X 2 ) − [ E ( X ) ] 2 = β 2 α ( α + 1 ) − ( α β ) 2 = α β 2 \begin{align*} Var(X)&=E(X^2)-\big[E(X)\big]^2\\ &=\beta^2\alpha(\alpha+1)-(\alpha\beta)^2\\ &=\alpha\beta^2 \end{align*} Var(X)=E(X2)[E(X)]2=β2α(α+1)(αβ)2=αβ2


矩母函数mgf

M ( t ) = E [ e t X ] = ∫ 0 ∞ e t x 1 Γ ( α ) β α x α − 1 e − x β d x = ∫ 0 ∞ 1 Γ ( α ) β α x α − 1 e − x ( 1 − β t ) / β d x \begin{align*} M(t)&=E\big[e^{tX}\big]\\ &=\int^\infty_0 e^{tx} \frac{1}{\Gamma(\alpha) \beta^\alpha} x^{\alpha-1} e^{-\frac{x}{\beta}} \mathrm{d}x\\ &=\int^\infty_0 \frac{1}{\Gamma(\alpha) \beta^\alpha} x^{\alpha-1} e^{-x(1-\beta t)/\beta} \mathrm{d}x\\ \end{align*} M(t)=E[etX]=0etxΓ(α)βα1xα1eβxdx=0Γ(α)βα1xα1ex(1βt)/βdx

y = x ( 1 − β t ) / β , t < 1 / β y=x(1-\beta t)/\beta,t<1/\beta y=x(1βt)/β,t<1/β ,则 x = β y / ( 1 − β t ) x=\beta y/(1-\beta t) x=βy/(1βt) ,得

M ( t ) = ∫ 0 ∞ β / ( 1 − β t ) Γ ( α ) β α ( β y 1 − β t ) α − 1 e − y d y = ( 1 1 − β t ) α ∫ 0 ∞ 1 Γ ( α ) y α − 1 e − y d y = ( 1 − β t ) − α , t < 1 β \begin{align*} M(t)&=\int^\infty_0 \frac{\beta/(1-\beta t)}{\Gamma(\alpha)\beta^\alpha} \Big(\frac{\beta y}{1-\beta t}\Big)^{\alpha-1} e^{-y} \mathrm{d}y\\ &=\Big(\frac{1}{1-\beta t}\Big)^\alpha \int^\infty_0 \frac{1}{\Gamma(\alpha)} y^{\alpha-1} e^{-y} \mathrm{d}y\\ &=(1-\beta t)^{-\alpha},t<\frac{1}{\beta} \end{align*} M(t)=0Γ(α)βαβ/(1βt)(1βtβy)α1eydy=(1βt1)α0Γ(α)1yα1eydy=(1βt)α,t<β1


与指数分布的关系

α = 1 \alpha=1 α=1 时,伽马分布就是指数分布,即

Γ ( 1 , β ) = E x p ( 1 β ) \Gamma(1,\beta)=Exp(\frac{1}{\beta}) Γ(1,β)=Exp(β1)


χ 2 \chi^2 χ2 分布的关系

α = n 2 , β = 2 \alpha=\frac{n}{2},\beta=2 α=2n,β=2 时,伽马分布时自由度为 n n n 的卡方分布,即

Γ ( n 2 , 2 ) = χ 2 ( n ) \Gamma(\frac{n}{2},2)=\chi^2(n) Γ(2n,2)=χ2(n)


可加性

X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn 是独立随机变量,对于 i = 1 , 2 , ⋯   , n i=1,2,\cdots,n i=1,2,,n ,假定 X i X_i Xi 服从 Γ ( α i , β ) \Gamma(\alpha_i,\beta) Γ(αi,β) 分布. 设 Y = ∑ i = 1 n X i Y=\sum^n_{i=1}X_i Y=i=1nXi . 于是, Y Y Y 服从 Γ ( ∑ i = 1 n α i , β ) \Gamma(\sum^n_{i=1}\alpha_i,\beta) Γ(i=1nαi,β) 分布


特殊性质(伸缩)

设随机变量 X X X服从伽马分布 G a ( α , β ) Ga(\alpha,\beta) Ga(α,β),则当 k > 0 k>0 k>0时,有 Y = k X ∼ Γ ( α , k β ) Y=kX\sim \Gamma(\alpha,k\beta) Y=kXΓ(α,kβ) .

(可以通过这个性质将任何伽马分布变为 χ 2 \chi^2 χ2 分布)

  • 19
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值