正态分布

本篇笔记内容来源
数理统计学导论(原书第7版) 机械工业出版社


概率密度函数pdf

f ( x ) = 1 2 π σ e − 1 2 ( x − μ σ ) 2 f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2} f(x)=2π σ1e21(σxμ)2

N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2) μ \mu μ 是期望, σ 2 \sigma^2 σ2 是方差


矩母函数mgf

M X ( t ) = e μ t + 1 2 σ 2 t 2 M_X(t)=e^{\mu t+\frac{1}{2}\sigma^2t^2} MX(t)=eμt+21σ2t2


正态分布与卡方分布

如果随机变量 X X X 服从 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2) ,那么随机变量 V = ( X − μ ) 2 / σ 2 V=(X-\mu)^2/\sigma^2 V=(Xμ)2/σ2 服从 χ 2 ( 1 ) \chi^2(1) χ2(1)

证:

W = ( X − μ ) / σ W=(X-\mu)/\sigma W=Xμ/σ 服从 N ( 0 , 1 ) N(0,1) N(0,1) ,则对于 v ⩾ 0 v\geqslant0 v0 V V V 的cdf G ( v ) G(v) G(v)

G ( v ) = P ( W 2 ⩽ v ) = P ( − v ⩽ W ⩽ v ) G(v)=P(W^2\leqslant v)=P(-\sqrt{v}\leqslant W\leqslant \sqrt{v}) G(v)=P(W2v)=P(v Wv )

G ( v ) = 2 ∫ 0 v 1 2 π e − w 2 / 2 d w , v ⩾ 0 G(v)=2\int^{\sqrt{v}}_0\frac{1}{\sqrt{2\pi}}e^{-w^2/2}\mathrm{d}w,v\geqslant0 G(v)=20v 2π 1ew2/2dw,v0

而且

G ( v ) = 0 , v < 0 G(v)=0,v<0 G(v)=0,v<0

作变量变换 w = t w=\sqrt{t} w=t

G ( v ) = ∫ 0 v 1 2 π t e − t / 2 d t G(v)=\int^{v}_0\frac{1}{\sqrt{2\pi t}}e^{-t/2}\mathrm{d}t G(v)=0v2πt 1et/2dt

因此,连续型随机变量 V V V 的 pdf 是

g ( v ) = { 1 π 2 v 1 / 2 − 1 e − v / 2 , 0 < v < ∞ 0 , 其他 g(v)= \begin{cases} \frac{1}{\sqrt{\pi}\sqrt{2}}v^{1/2-1}e^{-v/2},&0<v<\infty\\ 0,&其他 \end{cases} g(v)={π 2 1v1/21ev/2,0,0<v<其他

所以, V ∼ Γ ( 1 2 , 2 ) V\sim\Gamma(\frac{1}{2},2) VΓ(21,2) V ∼ χ 2 ( 1 ) V \sim \chi^2(1) Vχ2(1)


可加性

X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn 是独立随机变量,对于 i = 1 , ⋯   , n i=1,\cdots,n i=1,,n X i X_i Xi 服从 N ( μ i , σ i 2 ) N(\mu_i,\sigma^2_i) N(μi,σi2). 设 Y = ∑ i = 1 n a i X i Y=\sum^n_{i=1}a_iX_i Y=i=1naiXi,其中 a 1 , ⋯   , a n a_1,\cdots,a_n a1,,an 均为常数,于是, Y Y Y 的分布是 N ( ∑ i = 1 n a i μ i , ∑ i = 1 n a i 2 σ i 2 ) N(\sum^n_{i=1}a_i\mu_i,\sum^n_{i=1}a^2_i\sigma^2_i) N(i=1naiμi,i=1nai2σi2).

证:

Y Y Y 的 mgf 是

M Y ( t ) = ∏ i = 1 n exp ⁡ { t a i μ i + ( 1 / 2 ) t 2 a i 2 σ i 2 } = exp ⁡ { t ∑ i = 1 n a i μ i + ( 1 / 2 ) t 2 ∑ i = 1 n a i 2 σ i 2 } M_Y(t)=\prod^n_{i=1}\exp\{ta_i\mu_i+(1/2)t^2a^2_i\sigma^2_i\} =\exp\{t\sum^n_{i=1}a_i\mu_i+(1/2)t^2\sum^n_{i=1}a^2_i\sigma^2_i\} MY(t)=i=1nexp{taiμi+(1/2)t2ai2σi2}=exp{ti=1naiμi+(1/2)t2i=1nai2σi2}

正是 N ( ∑ i = 1 n a i μ i , ∑ i = 1 n a i 2 σ i 2 ) N(\sum^n_{i=1}a_i\mu_i,\sum^n_{i=1}a^2_i\sigma^2_i) N(i=1naiμi,i=1nai2σi2) 的 mgf

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值