数学分析(十二)-数项级数3-一般项级数3:阿贝尔判别法【若{aₙ}单调有界且级数Σbₙ收敛】、狄利克雷判别法【若{aₙ}单调递减且lim_{n→∞}aₙ=0且Σbₙ部分和有界】,则级数Σaₙbₙ收敛

本文介绍了数项级数收敛性的两种判别法:阿贝尔判别法和狄利克雷判别法。阿贝尔判别法指出,如果数列{an}单调有界且级数Σbn收敛,那么级数Σanbn也收敛。狄利克雷判别法则规定,如果{an}单调递减并趋近于0,且Σbn的部分和有界,那么Σanbn同样收敛。此外,通过举例展示了这两个判别法的实际运用,证明了级数∑ansinnx和∑ancosnx在(0,2π)区间内的收敛性。" 86064598,2103967,Weex移动应用开发:详解iconfont的使用,"['Weex开发', '图标库', '前端开发', '移动电商应用']
摘要由CSDN通过智能技术生成

本段介绍两个判别一般项级数收敛性的方法, 先引进一个公式:

引理 (分部求和公式, 也称阿贝尔变换 )

ε i , v i ( i = 1 , 2 , ⋯   , n ) \varepsilon_{i}, v_{i}(i=1,2, \cdots, n) εi,vi(i=1,2,,n) 为两组实数,若令

σ k = v 1 + v 2 + ⋯ + v k ( k = 1 , 2 , ⋯   , n ) , \sigma_{k}=v_{1}+v_{2}+\cdots+v_{k} \quad(k=1,2, \cdots, n), σk=v1+v2++vk(k=1,2,,n),

则有如下分部求和公式成立:

∑ i = 1 n ε i v i = ( ε 1 − ε 2 ) σ 1 + ( ε 2 − ε 3 ) σ 2 + ⋯ + ( ε n − 1 − ε n ) σ n − 1 + ε n σ n . ( 18 ) \sum_{i=1}^{n} \varepsilon_{i} v_{i}=\left(\varepsilon_{1}-\varepsilon_{2}\right) \sigma_{1}+\left(\varepsilon_{2}-\varepsilon_{3}\right) \sigma_{2}+\cdots+\left(\varepsilon_{n-1}-\varepsilon_{n}\right) \sigma_{n-1}+\varepsilon_{n} \sigma_{n} .\quad\quad(18) i=1nεivi=(ε1ε2)σ1+(ε2ε3)σ2++(εn1εn)σn1+εnσn.(18)


v 1 = σ 1 , v k = σ k − σ k − 1 ( k = 2 , 3 , ⋯   , n ) v_{1}=\sigma_{1}, v_{k}=\sigma_{k}-\sigma_{k-1}(k=2,3, \cdots, n) v1=σ1,vk=σkσk1(k=2,3,,n)分别乘 ε k ( k = 1 , 2 , ⋯   , n ) \varepsilon_{k} \quad(k=1,2, \cdots, n) εk(k=1,2,,n), 整理后就得所要证的公式(18).

推论 (阿贝尔引理)


(i) ε 1 , ε 2 , ⋯   , ε n \varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{n} ε1,ε2,,εn是单调数组;
(ii) 对任一正整数 k ( 1 ⩽ k ⩽ n ) k \quad(1 \leqslant k \leqslant n) k(1k

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值