本段介绍两个判别一般项级数收敛性的方法, 先引进一个公式:
引理 (分部求和公式, 也称阿贝尔变换 )
设 ε i , v i ( i = 1 , 2 , ⋯ , n ) \varepsilon_{i}, v_{i}(i=1,2, \cdots, n) εi,vi(i=1,2,⋯,n) 为两组实数,若令
σ k = v 1 + v 2 + ⋯ + v k ( k = 1 , 2 , ⋯ , n ) , \sigma_{k}=v_{1}+v_{2}+\cdots+v_{k} \quad(k=1,2, \cdots, n), σk=v1+v2+⋯+vk(k=1,2,⋯,n),
则有如下分部求和公式成立:
∑ i = 1 n ε i v i = ( ε 1 − ε 2 ) σ 1 + ( ε 2 − ε 3 ) σ 2 + ⋯ + ( ε n − 1 − ε n ) σ n − 1 + ε n σ n . ( 18 ) \sum_{i=1}^{n} \varepsilon_{i} v_{i}=\left(\varepsilon_{1}-\varepsilon_{2}\right) \sigma_{1}+\left(\varepsilon_{2}-\varepsilon_{3}\right) \sigma_{2}+\cdots+\left(\varepsilon_{n-1}-\varepsilon_{n}\right) \sigma_{n-1}+\varepsilon_{n} \sigma_{n} .\quad\quad(18) i=1∑nεivi=(ε1−ε2)σ1+(ε2−ε3)σ2+⋯+(εn−1−εn)σn−1+εnσn.(18)
证
以 v 1 = σ 1 , v k = σ k − σ k − 1 ( k = 2 , 3 , ⋯ , n ) v_{1}=\sigma_{1}, v_{k}=\sigma_{k}-\sigma_{k-1}(k=2,3, \cdots, n) v1=σ1,vk=σk−σk−1(k=2,3,⋯,n)分别乘 ε k ( k = 1 , 2 , ⋯ , n ) \varepsilon_{k} \quad(k=1,2, \cdots, n) εk(k=1,2,⋯,n), 整理后就得所要证的公式(18).
推论 (阿贝尔引理)
若
(i) ε 1 , ε 2 , ⋯ , ε n \varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{n} ε1,ε2,⋯,εn是单调数组;
(ii) 对任一正整数 k ( 1 ⩽ k ⩽ n ) k \quad(1 \leqslant k \leqslant n) k(1⩽k⩽