ch13报错

../../lib/libmyslam.so:对‘myslam::Config::config_’未定义的引用
collect2: error: ld returned 1 exit status
app/CMakeFiles/run_kitti_stereo.dir/build.make:151: recipe for target '../bin/run_kitti_stereo' failed
make[2]: *** [../bin/run_kitti_stereo] Error 1
CMakeFiles/Makefile2:195: recipe for target 'app/CMakeFiles/run_kitti_stereo.dir/all' failed
make[1]: *** [app/CMakeFiles/run_kitti_stereo.dir/all] Error 2
Makefile:94: recipe for target 'all' failed
make: *** [all] Error 2

原因:
config.cpp没定义std::shared_ptr<Config> Config::config_ = nullptr;
只有config.h中static std::shared_ptr<Config> config_;

在这里插入图片描述
绿色帧不移动,但是红色点在闪动变化,图像正常变化,但读到一定程度图片显示就不更新了,直到程序运行结束

发现frontend.cpp EstimateCurrentPose中缺少

current_frame_->SetPose(vertex_pose->estimate());

 LOG(INFO) << "Current Pose = \n" << current_frame_->Pose().matrix();

但是改正这个问题之后,现象是:只有一个绿色关键帧和红色当前帧
在这里插入图片描述
map.cpp 中void Map::RemoveOldKeyframe()

if (min_dis < min_kf_id)
{
    frame_to_remove = keyframes_.at(min_kf_id);
}

应该为

if (min_dis < min_dis_th)
{
    frame_to_remove = keyframes_.at(min_kf_id);
}

上述两条都不改,就会出现 看似跑几帧,然后图片也不再更新,pangolin画面也不再更新
(看情况 有时也能正常更新)
在这里插入图片描述

第一章 绪论作业答案(共50分) 一、分析如下程序中 (1)~ (10)各语句的频度。(每个1分,共10分) Ex( ) { int i , j , t ; (1) for( i=1 ; i<10 ; i++) //n = (2) printf(“\n %d” , i ); //n = (3) for(i=1; i<=2; i++) //n = (4) printf(“\n”); //n = (5) for(i=1; i<=9; i++) //n = { (6) for(j=1; j <= i ; j++) //n = { (7) t = i * j ; //n = (8) printf(“]”,t); //n = } (9) for(j=1; j 0) { if(x > 100) {x -= 10 ; y -- ;} else x ++ ; } 问if 语句执行了多少次?(2分) y--执行了多少次?(2分) x ++执行了多少次?(2分) 三、回答问题(共25分) 书中16页的起泡排序如下: void bubble_sort(int a[],int n){ //将a中整数序列重新排列成自小至大有序的整数序列。 for(i=n-1,change=TRUE;i>=1&&change;--i){ change=FALSE; for(j=0;ja[j+1]{a[j]<-->a[j+1];change=TRUE; } } }//bubble_sort 1.(共15分)分析该算法的最佳情况 ,最坏情况和平均情况下各自的时间复杂度(给出分析思路与过程)。 (1) 最佳情况的时间复杂度分析(5分): (2) 最坏情况的时间复杂度分析(5分): (3) 平均情况的时间复杂度分析(5分): 2.(共10分)比较与C语言书中的起泡排序异同,并从时空效率角度说明谁更优。 四、完成如下选择题(每3分,共9分)。 1. 设f为原操作,则如下算法的时间复杂度是( )。 for (i = 1; i*i=1;i--) for(j=1;jA[j+1]) A[j]与A[j+1]对换; 其中n为正整数,则算法在最坏情况下的时间复杂度为( )。 A.O(n) B.O(nlog2n) C. O(n3) D. O(n2)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值