2025年开源RAG最佳选择:浙大与蚂蚁的 KAG 技术突破

一、KAG简介

浙江大学与蚂蚁集团推出的知识增强生成(KAG)框架,旨在解决传统检索增强生成(RAG)方法在多跳推理和复杂逻辑处理中的不足。KAG通过结合知识图谱(KGs)和创新技术,显著提升了大语言模型在专业领域问答中的准确性和效率。

KAG框架的五大创新亮点:

  1. LLM友好的知识表示:通过层次化的知识组织,使大语言模型更适应专业领域的知识处理。

  2. 知识图谱与文本块互索引:提高了数据检索的精确度和效率,增强了知识的整合能力。

  3. 逻辑形式引导推理:结合语言推理与符号推理,支持复杂的多轮推理和问题求解。

  4. 知识对齐与语义推理:通过语义推理对齐不同层次的知识,提升了推理的准确性。

  5. 模型能力增强:优化大语言模型的推理能力,提升了专业领域问答系统的整体表现。

在蚂蚁集团,KAG成功应用于电子政务电子健康项目。在电子政务中,KAG开发了一个高效的政府服务问答系统;在电子健康中,KAG提升了医疗问答系统的准确度,尤其在医学指标解读和推荐方面,展现了强大的推理能力。
在这里插入图片描述

不同 RAG 模型在三个多跳问答数据集上的端到端生成性能。粗体和下划线的值分别是最佳指标和第二佳指标

二、KAG与常见RAG优化方法的比较

KAG框架在多跳推理和复杂查询处理上明显优于传统的RAG方法。为了更好地理解KAG的优势,以下是与常见几种RAG优化方法的对比:

  • Light RAG 和 Graph RAG:这两种方法通过使用知识图谱保持实体间的逻辑连接,解决了传统RAG方法在处理实体之间关系时丧失逻辑连贯性的问题。它们通常通过简单的知识图谱索引来进行检索,较为依赖基础的相似性匹配。

  • KAG:相比于Light RAG和Graph RAG,KAG不仅仅保留了知识图谱中的实体关系,还引入了多跳问答推理能力。KAG框架的核心优势在于其通过逻辑形式推理引擎,将复杂问题分解为多个子问题,通过多次检索和推理逐步构建答案。KAG能够在不同的推理层面上进行跨模态的信息处理,使得多步推理问题得到有效解决。

简而言之,KAG不仅仅保持了知识图谱的优势,还通过更为复杂的推理流程,提升了LLM在处理复杂问题时的能力。

三、KAG在数据摄取和数据查询阶段的优化

KAG在数据摄取(Data Ingestion)和数据查询(Data Querying)两个阶段进行了诸多优化,以确保大语言模型能更准确、高效地响应复杂查询。以下是其在这两个阶段的创新:

在这里插入图片描述

数据摄取阶段的优化
  • LLM友好的知识表示:KAG使用LLMFriSPG框架,这是一种为LLM定制的知识表示方式,它将知识组织成层次结构,包括数据、信息和知识。该框架支持无模式的信息提取,以及模式约束的专业知识构建,有效解决了不同领域知识的表示问题。

  • 互索引系统:KAG建立了知识图谱和原始文本块之间的互索引系统,保证了知识图谱和文本块的统一表示、推理和检索。这种互索引方式使得KAG能够高效地从知识图谱中获取有价值的信息,同时增强了推理的深度和精度。

  • 语义分块:为了更好地适应LLM的输入要求,KAG将文档划分为语义一致的语义块,每个块都包含ID、摘要、主要文本等字段,并且维护原文档与分块之间的双向关系。这种分块方式使得每个语义块都能保持独立的上下文和主题一致性。

  • 信息提取与知识图谱构建:KAG通过信息提取(例如实体、事件、关系等)构建了KGfr(知识图谱框架),并通过互索引将这些提取的知识和文本块关联起来。通过这种方式,KAG能够更精确地进行知识的索引和推理。

数据查询阶段的优化
  • 逻辑形式引导的混合推理引擎:KAG使用逻辑形式引导的混合推理引擎,通过将自然语言问题转化为符号化的推理问题,实现了多种推理方式的组合,如文本检索、知识图谱推理、语言推理和数值计算。这种多元化的推理方式使得KAG能够更加精确地处理复杂的查询。

  • 多轮解题机制:在面对复杂问题时,KAG能够通过多轮推理机制反思和存储中间结果,确保问题得到有效解决。如果一个问题无法一次解决,系统会在全局记忆中存储结果,并生成补充性问题以进一步推理。

  • 语义推理与知识对齐:KAG利用语义推理知识对齐技术,通过对知识图谱中不同粒度的知识进行语义对齐,降低噪声,提高图谱的连通性和准确性。这使得KAG在处理需要深度理解的查询时,能够利用语义推理弥补知识图谱中的空白。

四、KAG在蚂蚁集团的电子政务及电子健康项目上的应用

KAG框架已在蚂蚁集团的电子政务和电子健康项目中得到了实际应用,以下是两个典型案例:

4.1 KAG在电子政务中的应用

在电子政务项目中,KAG被应用于构建一个支持政府服务问答的系统。该系统可以回答用户关于服务方法、所需材料、服务条件和服务地点等问题。系统的建设过程中,KAG框架使用了11,000篇政府服务文档,并通过逻辑形式推理、语义增强等技术,提升了问答准确性和服务效率。
在这里插入图片描述

4.2 KAG在电子健康中的应用

在电子健康项目中,KAG被应用于构建一个医疗问答系统,能够回答用户关于疾病症状、疫苗接种、医疗指标等问题。系统使用了来自医学专家的权威文档,构建了超过180万个实体和40万个术语集,通过KAG框架,提供了超过700条医疗指标计算规则。这一应用显著提高了医疗问题的解答效率和准确性,特别是在复杂的医学问题上。

五、快速上手

对于普通用户,KAG提供了简单的安装步骤,以下是如何快速启动KAG系统:

5.1 环境与依赖项安装
  • macOS 用户:macOS Monterey 12.6或更高版本
  • Linux 用户:CentOS 7 / Ubuntu 20.04或更高版本
  • Windows 用户:Windows 10 LTSC 2021或更高版本,配合WSL 2 / Hyper-V,Docker,Docker Compose
5.2 使用步骤

1. 下载并启动KAG服务:

curl -sSL https://raw.githubusercontent.com/OpenSPG/openspg/refs/heads/master/dev/release/docker-compose-west.yml -o docker-compose-west.yml
docker compose -f docker-compose-west.yml up -d

2. 访问KAG产品: 在浏览器中输入以下URL:http://127.0.0.1:8887

通过这些简单的步骤,用户可以快速启动并体验KAG框架的强大功能。

六、总结

KAG(知识增强生成)框架通过结合知识图谱与大语言模型,显著提升了模型在处理复杂查询和多跳推理时的能力。通过在数据摄取和查询阶段的优化,KAG能够更精确地进行知识推理、信息检索及语义增强,尤其在电子政务和电子健康等专业领域应用中展现了其强大的实际效能。随着技术的不断发展,KAG将在更多领域中得到广泛应用,并有望继续推动大语言模型在专业领域的突破。

KAG不仅仅是一个技术框架,它的创新性将为更多行业带来智能化转型的机会,未来的发展值得期待。

参考链接:

  • https://github.com/OpenSPG/KAG
  • https://arxiv.org/pdf/2409.13731

随着大模型的持续爆火,各行各业都在开发搭建属于自己企业的私有化大模型,那么势必会需要大量大模型人才,同时也会带来大批量的岗位?“雷军曾说过:站在风口,猪都能飞起来”可以说现在大模型就是当下风口,是一个可以改变自身的机会,就看我们能不能抓住了。

如何学习AI大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

那么针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

在这里插入图片描述

AI大模型学习福利

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述权,请联系删除。

<think>好的,我现在需要帮助用户了解如何部署KAG(Knowledge Acquisition Gateway)。根据用户提供的引用内容,首先我要从这些引用中提取有关KAG部署的信息。引用[1]提到了KAG开源项目地址论文,引用[2]详细介绍了KAG技术架构功能,引用[3]则提到了产品模式开发者模式,以及代码拷贝功能测试的步骤。 首先,用户需要部署教程或指南。根据引用[3],部署KAG需要下载代码、安装依赖、配置环境、构建知识库启动服务。我需要将这些步骤详细化,确保用户能够按照步骤操作。例如,代码下载部分需要指导用户到GitHub仓库克隆项目,安装依赖可能涉及Python包管理工具如pip。配置环境可能包括设置数据库连接、API密钥等,这部分需要具体说明配置文件的路径必要参数。 另外,引用[2]提到KAG支持图结构原始文本的互索引机制,因此在部署过程中可能需要配置图数据库,比如Neo4j或其他兼容的存储系统。需要检查是否在引用中有提到具体的数据库要求,如果没有的话,可能需要提醒用户参考官方文档。 还有,用户可能遇到的问题,比如依赖安装失败、配置错误或服务启动失败,需要给出常见解决方法。例如,确保Python版本符合要求,或者检查配置文件中的路径是否正确。 最后,生成相关问题时要围绕部署过程中可能涉及的方面,如环境准备、配置优化、监控方法等,确保问题对用户有实际帮助。 总结步骤: 1. 环境准备:安装Python、数据库等。 2. 代码获取:从GitHub克隆仓库。 3. 依赖安装:使用pip安装requirements.txt。 4. 配置调整:修改配置文件,设置数据库API密钥。 5. 知识库构建:导入数据,运行处理脚本。 6. 服务启动:运行主程序,测试API。 7. 验证部署:进行功能测试,检查日志。 需要确认引用中的信息是否足够覆盖这些步骤,如果有缺失,可能需要提示用户参考官方文档或社区资源。</think>### KAG知识库部署分步指南 根据KAG开源项目技术文档实操演示[^1][^3],部署流程主要分为以下核心步骤: $$ \text{部署流程图:} \quad \text{环境准备} \rightarrow \text{代码获取} \rightarrow \text{依赖安装} \rightarrow \text{服务启动} $$ 一、基础环境搭建 1. Python环境:需Python 3.8+,建议使用Anaconda创建虚拟环境 ```bash conda create -n kag_env python=3.8 conda activate kag_env ``` 2. 数据库支持:需安装PostgreSQL 12+(存储知识图谱)Redis 6+(缓存服务) 3. 向量引擎:推荐安装FAISS或Milvus用于向量检索 二、代码部署流程 1. 克隆项目仓库 ```bash git clone https://github.com/OpenSPG/KAG.git cd KAG ``` 2. 安装依赖包(注意需包含LLM接口) ```python pip install -r requirements.txt # 包含SPG框架、大模型接口等核心组件 ``` 3. 配置文件调整 ```yaml # config/kag_config.yaml 关键参数 knowledge_graph: storage: postgresql://user:pass@localhost:5432/kag_db llm_integration: api_key: sk-xxxxxxxx # 对接GPT或国产大模型的认证密钥 ``` 三、知识库初始化 1. 执行数据迁移命令 ```bash python manage.py migrate # 生成知识图谱存储结构[^2] ``` 2. 导入初始知识数据 ```python from kag_loader import DataImporter DataImporter.import_from_csv('knowledge_base/domain_data.csv') # 支持结构化/非结构化数据 ``` 四、服务启停管理 1. 启动API服务 ```bash gunicorn -w 4 kag_api:app -b 0.0.0.0:8000 # 启动RESTful API服务 ``` 2. 验证服务状态 ```bash curl http://localhost:8000/api/healthcheck # 应返回{"status":"OK"} ``` 五、部署验证(开发者模式) 1. 运行测试用例 ```bash pytest tests/integration/ # 包含知识检索、推理验证等测试项 ``` 2. 查看管理界面 通过浏览器访问 `http://部署IP:8000/admin` 可查看知识图谱可视化界面
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值