三维点云课程(七)——特征点描述

1. 什么是特征点

1.1 图像特征点

ORB slam 

1.2 点云特征点 

点云配准 :ICP要求有足够好的初始平移旋转矩阵,且有一定的重合率

2. 怎么提取特征点

2.1 图像提取特征点

2.1.1 Harris

 一个好的特征点,内部会随着移动而变动

U,V越小越灵敏  特征点是x、y方向都有较大的倒数

 

NMS操作过滤特征点 

 核心思想:一个小方块移动后,里面的Intensity变换来选择特征点。变成了求方块内的协方差矩阵M,每个方向的一阶倒。

2.2 点云特征点

2.2.1 3DHarris

2.2.2 PCA 

三个方向点都很多的点是特征点 

传统方法对于噪声非常敏感,不能够使用 

2.3 深度学习特征提取

2.3.1 USIP 

无监督学习: 1、特征点跟点云旋转无关 2、特征点跟尺度有关 限制了感知域

上一列是置信度高的,下一列是所有特征点 

3. 特征点的描述

3.1 基于直方图

3.1.1 Histogram based

 只关心点的距离,不关心点分布

3.1.2 Signature based

同一个东西做旋转,描述子就会变 

3.1.3 PFH

每个点与周围点之间的连线

1、建立坐标系

2、计算特征

表述特征点周围点的变化

3、每个特征参数建立一个直方图 

3.1.4 SPFH

只考虑特征点与周围点之间的连线,做出三个直方图

3.2 基于坐标系

3.2.1 SHOT

  1. 建立坐标系LRF

2. 将特征点周围空间分成32块

3. 计算每个小空间的直方图,每个直方图长度是11

存在硬切割问题,对噪声不稳定,所以提出软切割。投票不直接加分非黑即白,而是变成线性插值的概率。

  • 总结

3.3 深度学习描述

3.3.1 3DMatch

对三维网格点云进行卷积处理,三维网格建立在特征点周围 

不同视角找到同一个地方,来避免随角度不同而不同

 

3.3.2 PPFNet 

 

 

 3.3.3 PPF-FoldNet

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

桦树无泪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值