[激光原理与应用-41]:《光电检测技术-8》- 白光干涉仪

本文介绍了白光及激光干涉仪的工作原理与应用。白光干涉仪通过对光程差进行精密测量来分析干涉条纹,适用于表面形貌测量。激光干涉仪则通过条纹变化来精确测量几何长度,两者结合可用于量块宽度等尺寸的高精度测量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

第1章 白光干涉仪概述

第2章 常见干涉仪

2.1 激光量块干涉仪

2.2 白光干涉测量表面形貌的系统


第1章 白光干涉仪概述

用于光在两个不同表面反射后形成的干涉条纹进行分析的设备。

干涉仪是一种对光在两个不同表面反射后形成的干涉条纹进行分析的仪器。

其基本原理就是通过不同光学元件形成参考光路和检测光路。

干涉仪是利用干涉原理测量光程之差从而测定有关物理量的光学仪器。

两束相干光光程差的任何变化会非常灵敏地导致干涉条纹的移动,而某一束相干光的光程变化是由它所通过的几何路程或介质折射率的变化引起,所以通过干涉条纹的移动变化可测量几何长度或折射率的微小改变量,从而测得与此有关的其他物理量。

测量精度决定于测量光程差的精度,干涉条纹每移动一个条纹间距,光程差就改变一个波长(~10-7米),所以干涉仪是以光波波长为单位测量光程差的,其测量精度之高是任何其他测量方法所无法比拟的。

第2章 常见干涉仪

2.1 激光量块干涉仪

用白光的干涉和激光的干涉条纹变化来测量下图中量块的宽度!

 (1)白光关涉:指示定位的作用,用来指示准直系统移动过程。

(2)激光干涉:用来计算两块的高度。

2.2 白光干涉测量表面形貌的系统

 

内容概要:本文介绍了一种利用遗传算法优化BP神经网络进行回归预测的方法,并提供了完整的MATLAB程序代码。主要内容包括数据预处理、遗传算法BP神经网络的结合、适应度函数的设计以及最终的预测结果展示。文中详细解释了如何将Excel格式的数据导入MATLAB并进行归一化处理,如何定义适应度函数来优化BP神经网络的参数(如激活函数学习率),并通过遗传算法找到最优解。实验结果显示,在某工业数据集上,经过遗传算法优化后的BP神经网络预测精度显著提高,从原来的0.82提升到了0.91。此外,还提到了一些实用技巧,比如调整遗传代数、修改激活函数等方法进一步改进模型性能。 适合人群:对机器学习有一定了解的研究人员技术爱好者,特别是那些希望深入了解遗传算法BP神经网络结合应用的人士。 使用场景及目标:适用于需要快速构建高效回归预测模型的场景,尤其是当传统BP神经网络无法达到预期效果时。通过本篇文章的学习,读者能够掌握一种有效的优化手段,从而提高模型的泛化能力预测准确性。 其他说明:代码可以直接应用于新的数据集,只需确保数据格式符合要求(Excel格式)。对于想要深入探索或改进现有模型的人来说,还可以尝试更换不同的激活函数或其他调节方式来获得更好的表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

文火冰糖的硅基工坊

你的鼓励是我前进的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值