【机器人学】平面2R机器人(五)——逆动力学

前情回顾

【机器人学】平面2R机器人(一)——正运动学

【机器人学】平面2R机器人(二)——逆运动学

【机器人学】平面2R机器人(三)——速度雅可比矩阵

【机器人学】平面2R机器人(四)——正动力学

解答

模型回顾

在上一篇文章中,计算得到平面2R机器人的动力学方程如下:

\pmb{\tau}=\begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22}\end{bmatrix} \begin{bmatrix} \ddot{\theta}_1\\ \ddot{\theta}_2\end{bmatrix} + \begin{bmatrix} D_{11} & D_{12} \\ D_{21} & D_{22}\end{bmatrix} \begin{bmatrix} \dot{\theta}_1^2\\ \dot{\theta}_2^2\end{bmatrix} + \begin{bmatrix} C_1\\C_2 \end{bmatrix} +\begin{bmatrix} G_1\\G_2 \end{bmatrix}

其中,

M_{11}=\frac{5ml^2}{3}+ml^2\cos\theta_2,M_{12}=M_{21}=\frac{ml^2}{3}+\frac{ml^2}{2}\cos\theta_2,M_{22}= \frac{ml^2}{3}

D_{11} = D_{22} = 0,D_{12}=-\frac{ml^2}{2}\sin\theta_2,D_{21}=\frac{ml^2}{2}\sin\theta_2

C_1=-ml^2\sin\theta_2 \ \dot{\theta}_1\dot{\theta}_2,C_2=0

G_1=\frac{3mgl}{2}\sin\theta_1+\frac{mgl}{2}\sin(\theta_1+\theta_2),G_2=\frac{mgl}{2}\sin(\theta_1+\theta_2)

逆动力学求解

所谓逆动力学,就是已知目标关节角度或末端坐标(两者可通过正逆运动学互相转换),求解出施加在机器人关节上的力或力矩。将我们在前文中求解的动力学方程进一步化简得到:

\pmb{\tau}=M(\pmb{\theta})\pmb{\ddot{\theta}}+C(\pmb{\theta},\pmb{\dot{\theta}})\pmb{\dot{\theta}}+N(\pmb{\theta},\pmb{\dot{\theta}})

如果是完美的机器人模型,并且 \pmb{\theta}(0)=\pmb{\theta}_d(0), \pmb{\dot \theta}(0)=\pmb{\dot \theta}_d(0),则可以选择:

\pmb{\tau}=M(\pmb{\theta}_d)\pmb{\ddot \theta}_d+C(\pmb{\theta}_d,\pmb{\dot \theta}_d)\pmb{\dot \theta}_d+N(\pmb{\theta}_d,\pmb{\dot \theta}_d)

作为施加的控制力矩,这就是开环控制律:机器人当前的状态并未被当前输入力矩所参考。但是没有模型是完美的,也没有系统是不受噪声干扰的,该控制律不能消除误差,所以需要引入反馈,使用计算力矩法控制机器人运动。

\pmb{\tau}=M(\pmb{\theta})(\pmb{\ddot \theta}_d-K_v\pmb{\dot e}-K_p\pmb{e})+C(\pmb{\theta},\pmb{\dot \theta})\pmb{\dot \theta}+N(\pmb{\theta},\pmb{\dot \theta})

其中 \pmb{e}=\pmb{\theta}-\pmb{\theta}_dK_v,K_p 是常增益矩阵,将该力矩方程代入前文的动力学方程得到:

M(\pmb{\theta})(\pmb{\ddot \theta}_d-K_v\pmb{\dot e}-K_p\pmb{e})+C(\pmb{\theta},\pmb{\dot \theta})\pmb{\dot \theta}+N(\pmb{\theta},\pmb{\dot \theta})=M(\pmb{\theta})\pmb{\ddot{\theta}}+C(\pmb{\theta},\pmb{\dot{\theta}})\pmb{\dot{\theta}}+N(\pmb{\theta},\pmb{\dot{\theta}})

M(\pmb{\theta})(\pmb{\ddot e}+K_v \pmb{\dot e} + K_p \pmb{e})=0

因为 M(\pmb{\theta}) 总是正定的,所以

(\pmb{\ddot e}+K_v \pmb{\dot e} + K_p \pmb{e})=0

系统变为了我们熟知的二阶线性系统。而且只要 K_v,K_p 均是正定对称矩阵,该控制律会使系统指数稳定。

未完待续...

【机器人学】平面2R机器人(六)——MATLAB仿真

  • 5
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Guo_Zhanyu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值