笔记(待续)-动力学逆问题相关基础知识

本文的相关知识点均来自梅凤翔教授的《动力学逆问题》这本书[1],有幸拜读,并做一些笔记。

动力学逆问题的定义

质点动力学第一类问题: (逆问题) 已知质点的运动规律,求作用在质点上的力。

质点动力学第二类问题: (正问题) 已知作用在质点上的力,求质点的运动规律。

动力学逆问题的基本解法: 将已知运动规律对时间 t t t求导数,再用牛顿第二定律来求解。

动力学逆问题的定义: 确定加在力学系统上的主动力和力矩、系统的参数以及加在其上的约束问题,系统在这些力、力矩、参数及约束下,按给定性质的运动时系统的一个可能的运动。

力学系统的状态用广义坐标矢量 q [ q 1 , q 2 , ⋯   , q n ] \boldsymbol{q} [q_1, q_2, \cdots, q_n] q[q1,q2,,qn]和广义速度矢量 q ˙ [ q ˙ 1 , q ˙ 2 , ⋯   , q ˙ n ] \dot{\boldsymbol{q}} [\dot{q}_1, \dot{q}_2, \cdots, \dot{q}_n] q˙[q˙1,q˙2,,q˙n]来确定,运动性质用如下所示的流形来给定:
Ω : ω μ ( q , q ˙ , t ) = c μ ( μ = 1 , 2 , ⋯   , m ≤ n ) (1.1) \varOmega: \omega_{\mu} (\boldsymbol{q}, \dot{\boldsymbol{q}}, t) = c_{\mu} \quad (\mu = 1, 2, \cdots, m \leq n) \tag{1.1} Ω:ωμ(q,q˙,t)=cμ(μ=1,2,,mn)(1.1)

其中某些常数 c μ c_{\mu} cμ可以是 0 0 0

动力学逆问题的三种基本提法

一、运动方程的建立

按给定的积分流形:
Ω : ω μ ( q , q ˙ , t ) = c μ ( μ = 1 , 2 , ⋯   , m ≤ n ) \varOmega: \omega_{\mu} (\boldsymbol{q}, \dot{\boldsymbol{q}}, t) = c_{\mu} \quad (\mu = 1, 2, \cdots, m \leq n) Ω:ωμ(q,q˙,t)=cμ(μ=1,2,,mn)

来构造方程组:
q ¨ ν = Q ν ( q , q ˙ , t ) ( ν = 1 , 2 , ⋯   , n ) \ddot{q}_{\nu} = Q_{\nu} (\boldsymbol{q}, \dot{\boldsymbol{q}}, t) \quad (\nu = 1, 2, \cdots, n) q¨ν=Qν(q,q˙,t)(ν=1,2,,n)

二、运动方程的修改

给定方程组:
q ¨ ν = Q 0 ν ( q , q ˙ , ν , t ) ( ν = 1 , 2 , ⋯   , n ) \ddot{q}_{\nu} = Q_{0 \nu} (\boldsymbol{q}, \dot{\boldsymbol{q}}, \boldsymbol{\nu}, t) \quad (\nu = 1, 2, \cdots, n) q¨ν=Q0ν(q,q˙,ν,t)(ν=1,2,,n)

按给定的积分流形:
Ω : ω μ ( q , q ˙ , t ) = c μ ( μ = 1 , 2 , ⋯   , m ≤ n ) \varOmega: \omega_{\mu} (\boldsymbol{q}, \dot{\boldsymbol{q}}, t) = c_{\mu} \quad (\mu = 1, 2, \cdots, m \leq n) Ω:ωμ(q,q˙,t)=cμ(μ=1,2,,mn)

来确定矢量函数 ν [ ν 1 ( q , q ˙ , t ) , ⋯   , ν k ( q , q ˙ , t ) ] \boldsymbol{\nu} [\nu_1 (\boldsymbol{q}, \dot{\boldsymbol{q}}, t), \cdots, \nu_k (\boldsymbol{q}, \dot{\boldsymbol{q}}, t)] ν[ν1(q,q˙,t),,νk(q,q˙,t)]

三、运动方程的封闭

给定方程组:
q ¨ ν = Q 0 ν ( q , q ˙ , u , u ˙ , t ) ( ν = 1 , 2 , ⋯   , n ) \ddot{q}_{\nu} = Q_{0 \nu} (\boldsymbol{q}, \dot{\boldsymbol{q}}, \boldsymbol{u}, \dot{\boldsymbol{u}}, t) \quad (\nu = 1, 2, \cdots, n) q¨ν=Q0ν(q,q˙,u,u˙,t)(ν=1,2,,n)

按给定的积分流形:
Ω : ω μ ( q , q ˙ , t ) = c μ ( μ = 1 , 2 , ⋯   , m ≤ r ) \varOmega: \omega_{\mu} (\boldsymbol{q}, \dot{\boldsymbol{q}}, t) = c_{\mu} \quad (\mu = 1, 2, \cdots, m \leq r) Ω:ωμ(q,q˙,t)=cμ(μ=1,2,,mr)

来建立封闭方程组:
u ¨ ρ = U ρ ( q , q ˙ , u , u ˙ , t ) ( ρ = 1 , 2 , ⋯   , r ) \ddot{u}_{\rho} = U_{\rho} (\boldsymbol{q}, \dot{\boldsymbol{q}}, \boldsymbol{u}, \dot{\boldsymbol{u}}, t) \quad (\rho = 1, 2, \cdots, r) u¨ρ=Uρ(q,q˙,u,u˙,t)(ρ=1,2,,r)

运动控制理论中的逆问题

稳定力学系统的解析构造问题是经典的动力学逆问题,即确定系统参数和作用于系统上的广义力,使得事先给定的可能运动(未受干扰),当有初始常作用和参数扰动时,对某些事先指定的运动品质指标来说是稳定的。

一、稳定性理论相关基本概念

研究一个质点系,其运动方程为:
F j ( q i , q ˙ i , q ¨ i , t ) = 0 ( i , j = 1 , 2 , ⋯   , n ) (3.1) F_j (q_i, \dot{q}_i, \ddot{q}_i, t) = 0 \quad (i,j = 1, 2, \cdots, n) \tag{3.1} Fj(qi,q˙i,q¨i,t)=0(i,j=1,2,,n)(3.1)

式中, q i q_i qi为广义坐标, q ˙ i \dot{q}_i q˙i为广义速度, q ¨ i \ddot{q}_i q¨i为广义加速度。假设已知系统 ( 3.1 ) (3.1) (3.1)的一个特解:
q j = φ j ( t ; q i 0 , q ˙ i 0 , t 0 ) (3.2) q_j = \varphi_j (t; q_{i0}, \dot{q}_{i0}, t_0) \tag{3.2} qj=φj(t;qi0,q˙i0,t0)(3.2)

并满足初始条件:
φ j ( t ; q i 0 , q ˙ i 0 , t 0 ) ∣ t = t 0 = q j 0 φ ˙ j ( t ; q i 0 , q ˙ i 0 , t 0 ) ∣ t = t 0 = q ˙ j 0 (3.3) \begin{aligned} \varphi_j (t; q_{i0}, \dot{q}_{i0}, t_0) | _{t = t_0} = q_{j0} \\ \dot{\varphi}_j (t; q_{i0}, \dot{q}_{i0}, t_0) | _{t = t_0} = \dot{q}_{j0} \end{aligned} \tag{3.3} φj(t;qi0,q˙i0,t0)t=t0=qj0φ˙j(t;qi0,q˙i0,t0)t=t0=q˙j0(3.3)

这个解描述了系统与初始广义坐标 q i 0 q_{i0} qi0与初始广义速度 q ˙ i 0 \dot{q}_{i0} q˙i0相应的一个可能运动,称为未扰运动(即系统的期望状态)。系统所有其他的可能运动称为扰动运动。这两种运动都是系统在同样的广义力和参数下的可能运动。

在一般情况下,运动的品质指标可以表示为广义坐标、广义速度和时间的函数,称为比较函数,记为:
P s ( q , q ˙ , t ) ( s = 1 , 2 , ⋯   , n ) (3.4) P_s (\boldsymbol{q}, \dot{\boldsymbol{q}}, t) \quad (s = 1, 2, \cdots, n) \tag{3.4} Ps(q,q˙,t)(s=1,2,,n)(3.4)

(待续)

二、构造稳定系统问题的提法

aaa

(待续)

三、构造稳定系统问题的解法

aaa

(待续)

参考文献

  1. 梅凤翔. 动力学逆问题 [M]. 国防工业出版社, 2009.
  2. 机械手动力学正问题和逆问题是什么?
  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Leweslyh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值