Lecture 02 Review of Linear Algebra

一、向量

1.向量通常表示为向量a或bold a;使用末位置的点坐标-初位置的点坐标;有方向和长度;没有绝对的开始位置。

2.向量正则化(Vector Normalization):

向量的长度

单位向量:长度为1的向量,被用来表示方向。

计算公示:\hat{a}=\frac{\vec{a}}{\left \| \vec{a} \right \|}

3.向量加法

几何上使用平行四边形法则和三角形法则。

代数上使用简单坐标相加。

4.笛卡儿积

X和Y可以是任何向量,通常是正交的单位向量。

A=\binom{x}{y}A^{T}=\left ( x,y \right )\left \| A \right \|=\sqrt{\left ( x^{2}+y^{2} \right )}

5.向量乘法

(1)点积,结果是一个数。

\vec a \cdot \vec b = \left\| \vec a \right\| \left\| \vec b \right\| \cos \theta

\cos \theta = \frac{\vec a \cdot \vec b}{\left\| \vec a \right\| \left\| \vec b \right\|}

对于单位向量:\cos \theta = \hat a \cdot \hat b

点乘可以快速得到两个向量之间的夹角。

  • 性质:满足交换律和分配率。

\vec a \cdot \vec b = \vec b \cdot \vec a

\vec a \cdot \left( \vec b + \vec c \right) = \vec a \cdot \vec b + \vec a \cdot \vec c

\left( k \vec a \right) \cdot \vec b = \vec a \cdot \left( k \vec b \right) = k \left( \vec a \cdot \vec b \right)

  • 笛卡尔坐标系中点积:对应坐标相乘再相加。
  • 点积在图形学中的应用:

两个向量之间的夹角

一个向量投影到另一个向量上

可以任意将一个向量分解到垂直方向、水平方向。

计算两个向量或两个方向的接近程度。

前与后的信息。

(2)叉积,结果是一个向量。

使用右手螺旋定则:四指代表旋转的方向,拇指代表叉乘后结果的方向。

在三维的空间中,如果\vec x \times \vec y = + \vec z,则说是右手坐标系。(本课程中用的是右手坐标系)

叉积在图形学中的应用:

判定左/右

判定内/外

(3)标准正交基和坐标系(Orthonormal bases and coordinate frames)

 

二、矩阵

矩阵就是一系列的数字,排列成几行几列的形式。

  • 矩阵&标量值相乘/相加:每个元素相乘/相加。
  • 矩阵&矩阵相乘:(M×N)(N×P)(M×N)(N×P),要求前一个的列数 = 后一个矩阵的行数。

1.矩阵-矩阵相乘

前一个矩阵的列数=后一个矩阵的行数

性质:不满足交换律;满足结合律和分配律。

2.矩阵-向量相乘

一个向量可以看成m x 1的矩阵。

关于y轴对称:\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ y \end{pmatrix}

3.矩阵转置

\left( AB \right)^T = B^TA^T

4.单位矩阵和逆矩阵

单位矩阵:I_{3 \times 3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}

矩阵的逆:AA^{-1} = A^{-1}A = I

\left( AB \right)^{-1} = B^{-1}A^{-1}

5.用矩阵的形式表示向量相乘

点乘:

\vec a \cdot \vec b = {\vec a}^T \vec b = \begin{pmatrix} x_a & y_a & z_a \end{pmatrix} \begin{pmatrix} x_b \\ y_b \\ z_b \end{pmatrix} = \left(x_ax_b + y_ay_b + z_az_b \right)

叉乘:

\vec a \times \vec b = A * b = \begin{pmatrix} 0 & -z_a & y_a \\ z_a & 0 & -x_a \\ -y_a & x_a & 0 \end{pmatrix} \begin{pmatrix} x_b \\ y_b \\ z_b \end{pmatrix}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值