YOLO-NAS姿态简介:姿态估计技术的飞跃

文 | BFT机器人 

图片

YOLO-NAS姿态模型是对姿态估计领域的最新贡献。今年早些时候,Deci凭借其开创性的物体检测基础模型YOLO-NAS获得了广泛认可。在YOLO-NAS成功的基础上,该公司现在推出了YOLO-NAS Pose作为其姿态估计的对应产品,这种姿势模型在延迟和准确性之间提供了很好的平衡。

图片

YOLO-NAS姿势

姿态估计在计算机视觉中起着至关重要的作用,涵盖了广泛的重要应用。这些应用包括监测医疗保健中的患者运动、分析运动员在运动中的表现、创建无缝的人机界面以及改进机器人系统。

01

YOLO-NAS姿态模型架构

2.1 基于规划空间的分类及特点

传统的姿态估计模型遵循以下两种方法之一:

  1. 检测场景中的所有人物,然后估计其关键点并创建姿势,自上而下的两阶段过程;

  2. 检测场景中的所有关键点&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值