二元函数极值问题:最小二乘法

最小二乘法

已知一组大致满足线性关系的实验数据

x x 1 x_1 x1 x 2 x_2 x2 x 3 x_3 x3 ⋯ \cdots x n x_n xn
y y 1 y_1 y1 y 2 y_2 y2 y 3 y_3 y3 ⋯ \cdots y n y_n yn

要确定直线 y = a x + b y=ax+b y=ax+b 使得所有观测值 y i y_i yi a x i + b ax_i+b axi+b 之差的平方和

Q = ∑ i = 1 n ( y i − a x i − b ) 2 Q=\sum_{i=1}^n(y_i-ax_i-b)^2 Q=i=1n(yiaxib)2
最小.将 y = a x + b y=ax+b y=ax+b 视为变量 y y y x x x 之间的近似函数关系,称为这组数据在最小二乘意义下的拟合曲线(实践中常称为经验公式).

确定常数 a a a , b b b 用的方法就是二元函数求极值的方法.显然 Q Q Q a a a, b b b 的函数,令

∂ Q ∂ a = − 2 ∑ i = 1 n ( y i − a x i − b ) x i = 2 a ∑ i = 1 n x i 2 + 2 b ∑ i = 1 n x i − 2 ∑ i = 1 n x i y i = 0 ∂ Q ∂ b = − 2 ∑ i = 1 n ( y i − a x i − b ) = 2 a ∑ i = 1 n x i − 2 ∑ i = 1 n y i + 2 n b = 0 \begin{aligned} \frac{\partial Q}{\partial a}&=-2\sum_{i=1}^n(y_i-ax_i-b)x_i=2a\sum_{i=1}^nx_i^2+2b\sum_{i=1}^nx_i-2\sum_{i=1}^nx_iy_i=0\\ \frac{\partial Q}{\partial b}&=-2\sum_{i=1}^n(y_i-ax_i-b)=2a\sum_{i=1}^nx_i-2\sum_{i=1}^ny_i+2nb=0 \end{aligned} aQbQ=2i=1n(yiaxib)xi=2ai=1nxi2+2bi=1nxi2i=1nxiyi=0=2i=1n(yiaxib)=2ai=1nxi2i=1nyi+2nb=0

就得到线性方程组

( ∑ i = 1 n x i 2 ∑ i = 1 n x i ∑ i = 1 n x i n ) ( a b ) = ( ∑ i = 1 n x i y i ∑ i = 1 n y i ) (1) \begin{pmatrix} \sum_{i=1}^nx_i^2 & \sum_{i=1}^nx_i\\[5pt] \sum_{i=1}^nx_i&n \end{pmatrix} \begin{pmatrix} a\\[5pt]b \end{pmatrix} =\begin{pmatrix} \sum_{i=1}^nx_iy_i\\[5pt] \sum_{i=1}^ny_i \end{pmatrix}\tag{1} (i=1nxi2i=1nxii=1nxin)(ab)=(i=1nxiyii=1nyi)(1)


∣ ∑ i = 1 n x i 2 ∑ i = 1 n x i ∑ i = 1 n x i n ∣ = n ∑ i = 1 n x i 2 − ( ∑ i = 1 n x i ) 2 = 1 2 ∑ i ≠ j ( x i − x j ) 2 ≠ 0 \begin{vmatrix} \sum_{i=1}^nx_i^2 & \sum_{i=1}^nx_i\\[5pt] \sum_{i=1}^nx_i&n \end{vmatrix}=n\sum_{i=1}^nx_i^2-(\sum_{i=1}^nx_i)^2=\frac{1}{2}\sum_{i\ne j}(x_i-x_j)^2\ne0 i=1nxi2i=1nxii=1nxin=ni=1nxi2(i=1nxi)2=21i=j(xixj)2=0
时,方程(1) 有唯一解:

a 0 = n ∑ i = 1 n x i y i − ∑ i = 1 n x i ∑ i = 1 n y i n ∑ i = 1 n x i 2 − ( ∑ i = 1 n x i ) 2 , b 0 = ∑ i = 1 n x i 2 ∑ i = 1 n y i − ∑ i = 1 n x i ∑ i = 1 n x i y i n ∑ i = 1 n x i 2 − ( ∑ i = 1 n x i ) 2 a_0=\frac{n\sum_{i=1}^nx_iy_i-\sum_{i=1}^nx_i\sum_{i=1}^ny_i}{n\sum_{i=1}^nx_i^2-(\sum_{i=1}^nx_i)^2},\qquad b_0=\frac{\sum_{i=1}^nx_i^2\sum_{i=1}^ny_i-\sum_{i=1}^nx_i\sum_{i=1}^nx_iy_i}{n \sum_{i=1}^nx_i^2-(\sum_{i=1}^nx_i)^2} a0=ni=1nxi2(i=1nxi)2ni=1nxiyii=1nxii=1nyi,b0=ni=1nxi2(i=1nxi)2i=1nxi2i=1nyii=1nxii=1nxiyi



下证明 a 0 a_0 a0, b 0 b_0 b0 是函数的最小值点


求得 Hessian 矩阵为:

2 ( ∑ i = 1 n x i 2 ∑ i = 1 n x i ∑ i = 1 n x i n ) 2\begin{pmatrix}\sum_{i=1}^nx_i^2&\sum_{i=1}^nx_i\\[5pt]\sum_{i=1}^nx_i&n\end{pmatrix} 2(i=1nxi2i=1nxii=1nxin)

由于 Hessian 矩阵总是正定的,所以 a 0 , b 0 a_0,b_0 a0,b0 Q ( a . b ) Q(a.b) Q(a.b) 的极小值点,又因为只有极小值点,所以 a 0 , b 0 a_0,b_0 a0,b0 是最小值点.

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值