下面我们将讨论一个重要的例子,即康托尔三分疏朗集.为此我们先给出疏朗集和稠密集的定义。
定义
设 E ⊂ R n , E \subset \mathbf { R } ^ { n } , E⊂Rn,
(1) F ⊂ R n , F \subset \mathbf { R } ^ { n } , F⊂Rn, 若对任意 x ∈ F x \in F x∈F 和任意邻域 U ( x ) , U ( x ) ∩ E ≠ ∅ , U ( x ) , U ( x ) \cap E \neq \varnothing , U(x),U(x)∩E=∅, 则称 E E E 在 F F F 中 稠密;
(2)若对任意 x ∈ R n x \in \mathbf { R } ^ { n } x∈Rn 和任意邻域 U ( x ) , U ( x ) , U(x), 存在 U ( y ) ⊂ U ( x ) ∩ E e , U ( y ) \subset U ( x ) \cap E ^ { e } , U(y)⊂U(x)∩Ee, 则称 E E E 是疏朗集 或 无处稠密集;
如有限点集或收敛可数列都是疏朗集有理点集 Q n \mathrm { Q } ^ { n } Qn 在 R n \mathbf { R } ^ { n } Rn 中稠密。
例(康托尔三分集)
将 [ 0 , 1 ] [ 0 , 1 ] [0,1] 三等分,去掉中间的开区间 ( 1 3 , 2 3 ) , \left( \frac { 1 } { 3 } , \frac { 2 } { 3 } \right) , (31,32), 剩下两个闭区间 [ 0 , 1 3 ] , [ 2 3 , 1 ] , \left[ 0 , \frac { 1 } { 3 } \right] , \left[ \frac { 2 } { 3 } , 1 \right] , [0,31],[32,1],记这两个闭区间之并为 E 1 . E _ { 1 } . E1. 又把这两个闭区间各三等分,去掉中间的两个开区间,即
( 1 9 , 2 9 ) , ( 7 9 , 8 9 ) , \left( \frac { 1 } { 9 } , \frac { 2 } { 9 } \right) , \left( \frac { 7 } { 9 } , \frac { 8 } { 9 } \right) , (91,92),(97,98),剩下 2 2 2 ^ { 2 } 22 个 闭区间,记这些闭区间之并为 E 2 . E _ { 2 } . E2. 一般地,当进行到第 n n n 次时,一共去掉 2 n − 1 2 ^ { n - 1 } 2n−1 个开区间,剩下 2 n 2 ^ { n } 2n 个长度为 3 − n 3 ^ { - n } 3−n 的互相隔离的闭
区间,记这些闭区间之并为 E n . E _ { n } . En. 而在第 n + 1 n + 1 n+1 次时,再将这 2 n 2 ^ { n } 2n 个闭区间各三等分,并去掉中间的开区间.如此继续下去,就从 [ 0 , 1 ] [ 0 , 1 ] [0,1]去掉了可数多个互不相交且没有公共端点的开区间,如图2.1所示,由 $\mathrm { S }$4定理2,剩下的必是一个闭集(它至少包含各邻接区间的端点及其聚点),称它为康托尔三分集,记为 P . P . P.
让我们来考察这个闭集 P P P 的性质,
1 ∘ P 1 ^ { \circ } P 1∘P 是完备集由于 P P P的邻接区间的作法,它们中的任何两个之间根本不存在公共端点,故 P P P 没有孤立点,因