实变函数论2-点集5:康托尔三分集

本文深入探讨了康托尔三分集,一个经典的分形几何例子。通过不断三等分并去除中间部分,形成一个没有内点、稠密且完备的闭集。康托尔三分集具有自相似性和零测度,其基数为无穷大,揭示了分形几何的奇妙特性。此外,文章还介绍了分形几何的基础概念,如豪斯多夫维数,并通过科赫曲线和谢尔平斯基地毯举例说明了分形的维度计算。
摘要由CSDN通过智能技术生成

下面我们将讨论一个重要的例子,即康托尔三分疏朗集.为此我们先给出疏朗集和稠密集的定义。

定义

E ⊂ R n , E \subset \mathbf { R } ^ { n } , ERn,
(1) F ⊂ R n , F \subset \mathbf { R } ^ { n } , FRn, 若对任意 x ∈ F x \in F xF 和任意邻域 U ( x ) , U ( x ) ∩ E ≠ ∅ , U ( x ) , U ( x ) \cap E \neq \varnothing , U(x),U(x)E=, 则称 E E E F F F稠密
(2)若对任意 x ∈ R n x \in \mathbf { R } ^ { n } xRn 和任意邻域 U ( x ) , U ( x ) , U(x), 存在 U ( y ) ⊂ U ( x ) ∩ E e , U ( y ) \subset U ( x ) \cap E ^ { e } , U(y)U(x)Ee, 则称 E E E疏朗集无处稠密集

如有限点集或收敛可数列都是疏朗集有理点集 Q n \mathrm { Q } ^ { n } Qn R n \mathbf { R } ^ { n } Rn 中稠密。

例(康托尔三分集)
[ 0 , 1 ] [ 0 , 1 ] [0,1] 三等分,去掉中间的开区间 ( 1 3 , 2 3 ) , \left( \frac { 1 } { 3 } , \frac { 2 } { 3 } \right) , (31,32), 剩下两个闭区间 [ 0 , 1 3 ] , [ 2 3 , 1 ] , \left[ 0 , \frac { 1 } { 3 } \right] , \left[ \frac { 2 } { 3 } , 1 \right] , [0,31],[32,1],记这两个闭区间之并为 E 1 . E _ { 1 } . E1. 又把这两个闭区间各三等分,去掉中间的两个开区间,即
( 1 9 , 2 9 ) , ( 7 9 , 8 9 ) , \left( \frac { 1 } { 9 } , \frac { 2 } { 9 } \right) , \left( \frac { 7 } { 9 } , \frac { 8 } { 9 } \right) , (91,92),(97,98),剩下 2 2 2 ^ { 2 } 22 个 闭区间,记这些闭区间之并为 E 2 . E _ { 2 } . E2. 一般地,当进行到第 n n n 次时,一共去掉 2 n − 1 2 ^ { n - 1 } 2n1 个开区间,剩下 2 n 2 ^ { n } 2n 个长度为 3 − n 3 ^ { - n } 3n 的互相隔离的闭
区间,记这些闭区间之并为 E n . E _ { n } . En. 而在第 n + 1 n + 1 n+1 次时,再将这 2 n 2 ^ { n } 2n 个闭区间各三等分,并去掉中间的开区间.如此继续下去,就从 [ 0 , 1 ] [ 0 , 1 ] [0,1]去掉了可数多个互不相交且没有公共端点的开区间,如图2.1所示,由 $\mathrm { S }$4定理2,剩下的必是一个闭集(它至少包含各邻接区间的端点及其聚点),称它为康托尔三分集,记为 P . P . P.

在这里插入图片描述

让我们来考察这个闭集 P P P 的性质,

1 ∘ P 1 ^ { \circ } P 1P 是完备集由于 P P P的邻接区间的作法,它们中的任何两个之间根本不存在公共端点,故 P P P 没有孤立点,因而

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值