常用 Jacobi 行列式 | 重积分变量替换

二维

极坐标变换:

{ x = r cos ⁡ θ y = r sin ⁡ θ ∂ ( x , y ) ∂ ( r , θ ) = r \left\{\begin{aligned} x=r\cos\theta\\ y=r\sin\theta\end{aligned}\right.\qquad \frac{\partial(x,y)}{\partial(r,\theta)}=r {x=rcosθy=rsinθ(r,θ)(x,y)=r

广义极坐标变换:

{ x = a r cos ⁡ θ y = b r sin ⁡ θ ∂ ( x , y ) ∂ ( r , θ ) = a b r \left\{\begin{aligned} x&=ar\cos\theta\\ y&=br\sin\theta\end{aligned}\right. \qquad \frac{\partial(x,y)}{\partial(r,\theta)}=abr {xy=arcosθ=brsinθ(r,θ)(x,y)=abr


三维

柱面坐标变换

{ x = r cos ⁡ θ y = r sin ⁡ θ z = z ∂ ( x , y , z ) ∂ ( r , θ , z ) = r \left\{\begin{aligned} x&=r\cos\theta\\ y&=r\sin\theta\\ z&=z \end{aligned}\right. \qquad \frac{\partial(x,y,z)}{\partial(r,\theta,z)}=r xyz=rcosθ=rsinθ=z(r,θ,z)(x,y,z)=r

球面坐标变换

{ x = r sin ⁡ φ cos ⁡ θ y = r sin ⁡ φ sin ⁡ θ z = r cos ⁡ φ ∂ ( x , y , z ) ∂ ( r , φ , θ ) = r 2 sin ⁡ φ \left\{\begin{aligned} x&=r\sin\varphi\cos\theta\\ y&=r\sin\varphi\sin\theta\\ z&=r\cos\varphi \end{aligned}\right. \qquad \frac{\partial(x,y,z)}{\partial(r,\varphi,\theta)}=r^2\sin\varphi xyz=rsinφcosθ=rsinφsinθ=rcosφ(r,φ,θ)(x,y,z)=r2sinφ

广义球面坐标变换

{ x = a r sin ⁡ φ cos ⁡ θ y = b r sin ⁡ φ sin ⁡ θ z = c r cos ⁡ φ ∂ ( x , y , z ) ∂ ( r , φ , θ ) = a b c r 2 sin ⁡ φ \left\{\begin{aligned} x&=ar\sin\varphi\cos\theta\\ y&=br\sin\varphi\sin\theta\\ z&=cr\cos\varphi \end{aligned}\right. \qquad \frac{\partial(x,y,z)}{\partial(r,\varphi,\theta)}=abcr^2\sin\varphi xyz=arsinφcosθ=brsinφsinθ=crcosφ(r,φ,θ)(x,y,z)=abcr2sinφ


2021年10月16日12:42:30

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值