国内SLAM技术发展现状大解析

导语:被很多学者认为是实现真正全自主移动机器人关键的SLAM技术,已经开始逐步走入人们的视野,过去几年扫地机器人的盛行让它名声大燥,而AGV、无人机等行业的兴起则让其找到了更加广阔的市场。今天,我们就来聊一聊现下大热的SLAM技术。

       被很多学者认为是实现真正全自主移动机器人关键的SLAM技术,已经开始逐步走入人们的视野,过去几年扫地机器人的盛行让它名声大燥,而AGV、无人机等行业的兴起则让其找到了更加广阔的市场。今天,我们就来聊一聊现下大热的SLAM技术。

       SLAM,英文全称是simultaneouslocalizationandmapping,即时定位与地图构建,因为用在SLAM上的传感器主要分两大类:激光雷达和摄像头。据此,业内也将SLAM分为激光SLAM和视觉SLAM两大类别。SLAM最早由Smith、Self和Cheeseman于1988年提出,至今已有30年的历史。但国内关于SLAM的研究并没有那么早,最近几年才开始逐渐兴起并应用,那目前在又国内发展得如何呢?

多领域应用

       SLAM应用领域广泛,按其应用行业也可分为两大类,即工业领域和商业领域。

       商业用途方面,目前应用最为成熟的应该是扫地机行业,而扫地机也算机器人里最早用到SLAM技术这一批了,国内的科沃斯、塔米扫地机通过用SLAM算法结合激光雷达或者摄像头的方法,让扫地机可以高效绘制室内地图,智能分析和规划扫地环境,成功让自己步入了智能导航的阵列。除了扫地机之外,SLAM技术在无人机、自动驾驶等都有应用,大疆有位工程师甚至说过“所有关于无人机的梦想都建立在SLAM之上”,可见SLAM技术的关键性。

       工业用途主要是集中在AGV领域,随着制造业以及电商仓储领域对柔性化搬运的需求不断上升,SLAM导航迎来了广阔的市场。将SLAM运用在AGV物流小车上,可以不用预先铺设任何轨道,方便工厂生产线的升级改造和导航路线的变更,实时避障,环境适应能力强,同时能够更好地实现多AGV小车的协调控制。当下国内有一些AGV企业都已开始将SLAM技术应用到AGV上,借此实现真正的自然导航。

多企业开发

       随着SLAM技术重要性的凸显以及应用市场的扩大,一些企业开始纷纷投入到SLAM技术研发中,这其中也可分为两大类,一是专门提供导航定位模块的企业,另一类则是移动机器人厂商,其开发SLAM多为自用。

                                                                        国内SLAM技术代表企业一览表

多传感器融合是趋势

       上表中可以看出,大部分的AGV企业还是以激光SLAM为主,毕竟当下激光SLAM是当下最稳定、最主流的定位导航方法。视觉SLAM则是未来研究的一个主流方向。不过激光和视觉都有其各自局限性。而多传感器的融合则能有效解决这类问题。目前有些企业已经开始采用多传感器的融合的方式取长补短,优势结合,为市场打造出真正好用的、易用的SLAM方案。相信今后多传感器的融合也将是一种必然的趋势。

       总的来说,不管是从技术层面还是应用层面,SLAM技术在国内都还处于发展阶段,相信未来随着消费刺激和产业链的发展,SLAM技术将会更加成熟应用范围也将更为广阔。

SLAM(Simultaneous Localization and Mapping)是一种同时进行定位和地图构建的技术,广泛应用于机器人、自动驾驶和增强现实等领域。下面是SLAM国内外研究现状的概述。 国内研究现状: 1. 基于激光雷达的SLAM技术国内得到了广泛的研究和应用。国内研究者主要关注于算法的优化和硬件的改进,例如嵌入式激光雷达、高速激光雷达等。 2. 基于视觉的SLAM技术国内也取得了不少进展。研究者主要关注于单目视觉、双目视觉和RGB-D视觉等不同模态的SLAM算法的优化和应用。 3. 基于惯性传感器的SLAM技术也是国内研究的热点之一。研究者主要关注于惯性测量单元(IMU)与其他传感器的融合,以及IMU的校准和误差估计等问题。 国外研究现状: 1. 基于深度学习的SLAM技术是当前国外研究的热点之一。研究者主要关注于使用深度学习方法优化SLAM算法,例如使用卷积神经网络(CNN)进行地图构建和定位等。 2. 基于视觉的SLAM技术在国外也取得了不少进展。研究者主要关注于使用相机阵列、光流法和多视图几何等方法解决SLAM中的视觉匹配和姿态估计等问题。 3. 基于激光雷达的SLAM技术在国外的研究也不断深入。研究者主要关注于使用多个激光雷达、自适应扫描等方法提高SLAM系统的鲁棒性和精度等问题。 总体来说,SLAM技术国内外都取得了不少进展,未来将会越来越广泛地应用于各种领域。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值