电机控制理论学习---三相静止坐标系下电机方程
前言
本部分内容是对于三相电机控制理论中三相静止坐标系电压方程相关内容的学习,旨在记录自己的学习过程以及对知识点的一些理解,参考的文章会附上链接。若有理解不到位的地方,希望各位大佬批评指正。
本部分参考内容有:
华东交通大学—电机学
三相静止坐标系的PMSM动态数学模型
电机学习笔记1——坐标变换与永磁同步电机的数学模型
永磁同步电机矢量控制(二)——数学模型及其控制原理
电机控制中的电感问题
BLDC矢量控制基础知识:三相线圈的电感矩阵
一、电机学中常见物理量及定律
1、常见物理量及其定义
名称 | 符号 | 定义 | 公式 |
---|---|---|---|
电感 | L | 导体内通过交流电流时,在导线的内部及其周围产生交变磁通,导线的磁通量与产生此磁通的电流之比。电感是自感与互感的合称 | L = ψ I L=\frac{\psi }{I} L=Iψ |
磁链 | ψ \psi ψ | 导电线圈或电流回路所链环的磁通量。导电线圈匝数N与穿过该线圈各匝的平均磁通量的乘积 | ψ = N ϕ \psi=N\phi ψ=Nϕ |
磁动势 | F | 电流流过导体所产生磁通量的势力,类似于电学中的电动势或电压 | F = N I F=NI F=NI |
磁通量 | ϕ \phi ϕ | 在磁感应强度为B的均匀磁场中,有一个面积为S且垂直于磁场方向的平面,磁感应强度与面积的乘积为平面的磁通量,通常用穿过该截面的磁力线数目来表示 | ϕ = B S \phi=BS ϕ=BS |
磁阻 | Rm | 一个磁路中磁阻等于磁动势与磁通量的比值 | R m = F ϕ R_m=\frac{F}{\phi} Rm=ϕF |
磁路 | Le | 磁通经过的闭合回路,主磁通经过的回路为主磁路,漏磁通经过的回路为漏磁路。 | – |
磁感应强度 | B | 描述磁场强弱与方向的物理量,也叫磁密,单位为特斯拉(T) | – |
磁导率 | μ \mu μ | 描述导磁介质导磁性能的物理量,磁导率越大,导磁性能越好 | 真空磁导率:
μ
0
=
4
π
×
1
0
−
7
\mu_0=4\pi×10^{-7}
μ0=4π×10−7H/m 铁磁材料磁导率 μ F e = ( 2000 ∼ 6000 ) μ 0 \mu_{Fe}=(2000\sim 6000)\mu_0 μFe=(2000∼6000)μ0随饱和程度增加而减小 |
磁场强度 | H H H | 描述磁场与产生磁场的电流之间关系的物理量,只与励磁电流大小、线圈匝数以及该点的几何位置有关,单位为 A/m | B = μ H B=\mu H B=μH |
2、电机学中常见的定律
-
磁路基尔霍夫第一定律:磁路中的任一闭合面内,在任一瞬间,穿过该闭合面的各分支磁路磁通的代数和等于0。如图1所示,有: ∑ ϕ = 0 \sum\phi = 0 ∑ϕ=0令进入封闭面的磁通为负,穿出闭合面的磁通为正,则: − ϕ 1 − ϕ 2 + ϕ 3 = 0 -\phi_1-\phi_2+\phi_3=0 −ϕ1−ϕ2+ϕ3=0
图1. 磁路基尔霍夫第一定律 -
安培环路定律:在磁路中,沿任一闭合路径,磁场强度H的线积分等于该闭合回路所包围的电流 i 的代数和。有: ∮ H ⋅ d l = ∑ i = N i \oint H\cdot dl=\sum i=Ni ∮H⋅dl=∑i=Ni若电流的正方向与闭合回线 l 的环行方向符合右手螺旋关系时,i 取正,否则取负,对于图2所示的闭合磁回路及电流,有: ∮ H ⋅ d l = − i 1 + i 2 + i 3 \oint H\cdot dl=-i_1+i_2+i_3 ∮H⋅dl=−i1+i2+i3
- 磁路欧姆定律:磁动势、磁通与磁阻满足磁路欧姆定律,如图3所示,当穿过S平面的磁密为B,时,磁通与磁密满足:
ϕ
=
∫
B
⋅
d
s
=
B
S
\phi=\int B\cdot ds=BS
ϕ=∫B⋅ds=BS根据安培环路定律有:
F
=
N
i
=
H
l
=
B
μ
l
=
ϕ
S
μ
l
F=Ni=Hl=\frac{B}{\mu }l=\frac{\phi}{S\mu }l
F=Ni=Hl=μBl=Sμϕl令磁阻为
R
m
=
l
S
μ
R_m= \frac{l}{S\mu }
Rm=Sμl那么有
ϕ
=
F
R
m
\phi=\frac{F}{R_m }
ϕ=RmF
- 电磁感应定律:变化的磁场会产生电场,使导体中产生感应电动势,在电机学中,分别有感生电动势和动生电动势。
其中感生电动势为:当磁通随时间发生变化时,线圈中产生感应电动势,若感应电动势的正方向与磁通正方向符合右手螺旋关系时,有: e = − d ψ d t = − N d ϕ d t e= -\frac{d\psi }{dt}=-N \frac{d\phi }{dt} e=−dtdψ=−Ndtdϕ负号表示阻碍磁通变化,如图4所示。
动生电动势为:如图5所示,运动导体在磁场中切割磁感线产生电势,满足右手定则,有: e = B l v e= Blv e=BlvB表示磁密(Wb/m2),l 为导体有效长度(m),v 为导体切割磁场速度(m/s)
- 电磁力定律:如图6所示,载流导体在磁场中会受到电磁力的作用,满足左手定则,有:
f
=
B
i
l
f= Bil
f=BilB表示磁密(Wb/m2),i 为导体中的电流(A),l 为导体的有效长度(m)
二、电机学中常用的三角函数公式
s
i
n
(
A
+
B
)
=
s
i
n
A
c
o
s
B
+
c
o
s
A
s
i
n
B
sin(A+B)=sinAcosB+cosAsinB
sin(A+B)=sinAcosB+cosAsinB
s
i
n
(
A
−
B
)
=
s
i
n
A
c
o
s
B
−
c
o
s
A
s
i
n
B
sin(A-B)=sinAcosB-cosAsinB
sin(A−B)=sinAcosB−cosAsinB
c
o
s
(
A
+
B
)
=
c
o
s
A
c
o
s
B
−
s
i
n
A
s
i
n
B
cos(A+B)=cosAcosB-sinAsinB
cos(A+B)=cosAcosB−sinAsinB
c
o
s
(
A
−
B
)
=
c
o
s
A
c
o
s
B
+
s
i
n
A
s
i
n
B
cos(A-B)=cosAcosB+sinAsinB
cos(A−B)=cosAcosB+sinAsinB
s
i
n
(
−
A
)
=
−
s
i
n
A
sin(-A)=-sinA
sin(−A)=−sinA
c
o
s
(
−
A
)
=
c
o
s
A
cos(-A)=cosA
cos(−A)=cosA
s
i
n
(
π
2
−
A
)
=
c
o
s
A
sin(\frac{\pi}{2}-A)=cosA
sin(2π−A)=cosA
c
o
s
(
π
2
−
A
)
=
s
i
n
A
cos(\frac{\pi}{2}-A)=sinA
cos(2π−A)=sinA
s
i
n
(
π
2
+
A
)
=
c
o
s
A
sin(\frac{\pi}{2}+A)=cosA
sin(2π+A)=cosA
c
o
s
(
π
2
+
A
)
=
−
s
i
n
A
cos(\frac{\pi}{2}+A)=-sinA
cos(2π+A)=−sinA
s
i
n
(
π
−
A
)
=
s
i
n
A
sin(\pi-A)=sinA
sin(π−A)=sinA
c
o
s
(
π
−
A
)
=
−
c
o
s
A
cos(\pi-A)=-cosA
cos(π−A)=−cosA
s
i
n
(
π
+
A
)
=
−
s
i
n
A
sin(\pi+A)=-sinA
sin(π+A)=−sinA
c
o
s
(
π
+
A
)
=
−
c
o
s
A
cos(\pi+A)=-cosA
cos(π+A)=−cosA
三、三相坐标系定子电压方程
假定有:
(1)定子绕组星形连接,三相电流为理想正弦电流;
(2)忽略定子齿槽效应对气隙磁场畸变的影响;
(3)不考虑磁滞损耗和涡流损耗;
(4)忽略电机参数对温度的敏感性;
(5)忽略永磁体磁饱和;
理想电机模型的电压方程可以表示为:
[
U
A
U
A
U
C
]
=
(
R
0
0
0
R
0
0
0
R
)
[
i
A
i
B
i
C
]
+
d
d
t
[
ψ
A
ψ
B
ψ
C
]
\begin{bmatrix} U_A \\U_A \\U_C \end{bmatrix}=\begin{pmatrix} R & 0 & 0 \\ 0 & R & 0 \\ 0 & 0 & R \\ \end{pmatrix}\begin{bmatrix} i_A \\i_B \\i_C \end{bmatrix}+\frac{d}{dt}\begin{bmatrix} \psi _A \\\psi _B \\\psi _C \end{bmatrix}
UAUAUC
=
R000R000R
iAiBiC
+dtd
ψAψBψC
这里
U
A
,
U
B
,
U
C
U_A,U_B,U_C
UA,UB,UC为三相定子电压;
i
A
,
i
B
,
i
C
i_A,i_B,i_C
iA,iB,iC为三相定子电流;
ψ
A
,
ψ
B
,
ψ
C
\psi_A,\psi_B,\psi_C
ψA,ψB,ψC为定子磁链;
R
R
R为定子相电阻。
方程前半部分很容易理解,就是流过绕组的电流与绕组电阻乘积得到绕组直流压降,后半部分是绕组电动势,由感生电动势与动生电动势两部分组成,放到磁链方程中说明。
四、三相坐标系定子磁链方程
如图7所示,绕组磁链主要包括绕组电感产生的磁链以及永磁体磁链在绕组上的分量,永磁体磁链分量只与转子位置有关,通过三角函数很容易求解,而要知道电感产生的磁链,需要计算出绕组电感,从图7可以看出来,绕组电感由两部分组成,一部分是绕组自感,另一部分是其他绕组对求解绕组的互感,分别求解。
1、定子绕组自感
绕组自感也会受到转子位置影响(假设转子为凸极性转子),还是图7,由于铁心磁导率远大于永磁体和空气,转子旋转会导致绕组磁路磁阻周期性变化。例如当转子d轴正对绕组时,绕组磁路磁阻最大,当q轴正对绕组时,绕组磁路磁阻最小,磁阻变化符合正弦规律,磁阻与磁导率成反比,那么磁导率与转子位置关系如图8所示。
根据图8描述,磁导率与转子位置关系可以表示为: λ δ ( θ ) = λ δ 0 − λ δ 2 c o s 2 θ \lambda_{\delta} (\theta)=\lambda_{\delta 0} - \lambda_{\delta 2}cos2 \theta λδ(θ)=λδ0−λδ2cos2θ其中, θ \theta θ为某一点与d轴之间的夹角, λ δ 0 \lambda_{\delta 0} λδ0 为气隙磁导率的平均值, λ δ 2 \lambda_{\delta 2} λδ2 为气隙磁导率的二次谐波幅值。
根据电感计算公式: L = ψ i = N ϕ i = N F R m i = N 2 R m L=\frac{\psi}{i}=\frac{N\phi}{i}=\frac{N\frac{F}{R_m}}{i}=\frac{N^2}{R_m} L=iψ=iNϕ=iNRmF=RmN2可知,转子旋转会导致绕组电感周期性变化,当 θ \theta θ为某A相绕组与d轴之间的夹角时,各相绕组自感可以表示为: { L A A = L s 0 − L s 2 c o s 2 θ L B B = L s 0 − L s 2 c o s 2 ( θ − 12 0 ∘ ) L C C = L s 0 − L s 2 c o s 2 ( θ + 12 0 ∘ ) \left\{\begin{matrix} L_{AA}=L_{s 0}-L_{s 2}cos2\theta \\ \\L_{BB}=L_{s 0}-L_{s 2}cos2(\theta-120^{\circ}) \\ \\L_{CC}=L_{s 0}-L_{s 2}cos2(\theta+120^{\circ}) \end{matrix}\right. ⎩ ⎨ ⎧LAA=Ls0−Ls2cos2θLBB=Ls0−Ls2cos2(θ−120∘)LCC=Ls0−Ls2cos2(θ+120∘)
2、定子绕组互感
假设给B相绕组通入电流,求解对C相绕组的互感,如图9所示。
B相绕组产生的磁动势可以计算为: F B = N i B F_B=Ni_B FB=NiB其中, N N N为B相绕组匝数, i B i_B iB 为B相绕组电流,将B相绕组产生的磁动势分解到dq坐标系: { F B d = − F B c o s ( π 3 + θ ) = F B c o s ( θ − 2 π 3 ) = N i B c o s ( θ − 2 π 3 ) F B q = F B c o s ( 2 π 3 − θ − π 2 ) = − F B s i n ( θ − 2 π 3 ) = − N i B s i n ( θ − 2 π 3 ) \left\{\begin{matrix} F_{Bd}=-F_Bcos(\frac{\pi}{3}+\theta)= F_Bcos(\theta -\frac{2\pi}{3})=Ni_Bcos(\theta -\frac{2\pi}{3})\\ \\F_{Bq}=F_Bcos(\frac{2\pi}{3}-\theta-\frac{\pi}{2})= -F_Bsin(\theta -\frac{2\pi}{3})=-Ni_Bsin(\theta -\frac{2\pi}{3}) \end{matrix}\right. ⎩ ⎨ ⎧FBd=−FBcos(3π+θ)=FBcos(θ−32π)=NiBcos(θ−32π)FBq=FBcos(32π−θ−2π)=−FBsin(θ−32π)=−NiBsin(θ−32π)B轴产生的磁动势在dq轴的磁链分量为: { ψ B d = N F B d R m B d = N 2 R m B d i B c o s ( θ − 2 π 3 ) ψ B q = N F B q R m B q = − N 2 R m B q i B c o s ( θ − 2 π 3 ) \left\{\begin{matrix} \psi_{Bd}=\frac{NF_{Bd}}{R_{mBd}}=\frac{N^2}{R_{mBd}}i_Bcos(\theta-\frac{2 \pi}{3})\\ \\\psi_{Bq}=\frac{NF_{Bq}}{R_{mBq}}=-\frac{N^2}{R_{mBq}}i_Bcos(\theta-\frac{2 \pi}{3}) \end{matrix}\right. ⎩ ⎨ ⎧ψBd=RmBdNFBd=RmBdN2iBcos(θ−32π)ψBq=RmBqNFBq=−RmBqN2iBcos(θ−32π)磁链分解相当于把 原本静止的B相绕组坐标变换到随转子旋转的dq轴上,这样的话,转子永磁体一直正对B相绕组在d轴的分量,结合图8有: { N 2 R m B d = L s 0 − L s 2 N 2 R m B q = L s 0 + L s 2 \left\{\begin{matrix} \frac{N^2}{R_{mBd}}=L_{s 0}-L_{s 2}\\ \\\frac{N^2}{R_{mBq}}=L_{s 0}+L_{s 2} \end{matrix}\right. ⎩ ⎨ ⎧RmBdN2=Ls0−Ls2RmBqN2=Ls0+Ls2根据图9,将dq坐标系的磁链分解到C相,有: ψ C B = − ψ B d c o s ( π − θ − 2 π 3 ) − ψ B q c o s ( π 2 − ( π − θ − 2 π 3 ) ) = ψ B d c o s ( θ + 2 π 3 ) − ψ B q s i n ( θ + 2 π 3 ) \psi_{CB}=-\psi_{Bd}cos(\pi-\theta-\frac{2 \pi}{3})-\psi_{Bq}cos(\frac{\pi}{2}-(\pi-\theta-\frac{2 \pi}{3}))=\psi_{Bd}cos(\theta+\frac{2 \pi}{3})-\psi_{Bq}sin(\theta+\frac{2 \pi}{3}) ψCB=−ψBdcos(π−θ−32π)−ψBqcos(2π−(π−θ−32π))=ψBdcos(θ+32π)−ψBqsin(θ+32π)可以求出B相绕组导电时对C相的互感为: M C B = ψ C B i B = ( L s 0 − L s 2 ) c o s ( θ − 2 π 3 ) c o s ( θ + 2 π 3 ) + ( L s 0 + L s 2 ) s i n ( θ − 2 π 3 ) s i n ( θ + 2 π 3 ) M_{CB}=\frac{\psi_{CB}}{i_B}=(L_{s 0}-L_{s 2})cos(\theta-\frac{2 \pi}{3})cos(\theta+\frac{2 \pi}{3})+(L_{s 0}+L_{s 2})sin(\theta-\frac{2 \pi}{3})sin(\theta+\frac{2 \pi}{3}) MCB=iBψCB=(Ls0−Ls2)cos(θ−32π)cos(θ+32π)+(Ls0+Ls2)sin(θ−32π)sin(θ+32π)化简一下得到: M C B = − 1 2 L s 0 − L s 2 c o s ( 2 θ ) M_{CB}=-\frac{1}{2}L_{s 0}-L_{s 2}cos(2 \theta) MCB=−21Ls0−Ls2cos(2θ)同理可以求得: M B C = M C B = − 1 2 L s 0 − L s 2 c o s ( 2 θ ) M_{BC}=M_{CB}=-\frac{1}{2}L_{s 0}-L_{s 2}cos(2 \theta) MBC=MCB=−21Ls0−Ls2cos(2θ) M A C = M C A = − 1 2 L s 0 − L s 2 c o s ( 2 θ + 2 π 3 ) M_{AC}=M_{CA}=-\frac{1}{2}L_{s 0}-L_{s 2}cos(2 \theta+\frac{2\pi}{3}) MAC=MCA=−21Ls0−Ls2cos(2θ+32π) M A B = M B A = − 1 2 L s 0 − L s 2 c o s ( 2 θ − 2 π 3 ) M_{AB}=M_{BA}=-\frac{1}{2}L_{s 0}-L_{s 2}cos(2 \theta-\frac{2\pi}{3}) MAB=MBA=−21Ls0−Ls2cos(2θ−32π)
3、定子绕组电感矩阵
L s = [ L A A M A B M A C M B A L B B M B C M C A M C B L C C ] = [ L s 0 − L s 2 c o s 2 θ − 1 2 L s 0 − L s 2 c o s ( 2 θ − 2 π 3 ) − 1 2 L s 0 − L s 2 c o s ( 2 θ + 2 π 3 ) − 1 2 L s 0 − L s 2 c o s ( 2 θ − 2 π 3 ) L s 0 − L s 2 c o s 2 ( θ − 2 π 3 ) ) − 1 2 L s 0 − L s 2 c o s ( 2 θ ) − 1 2 L s 0 − L s 2 c o s ( 2 θ + 2 π 3 ) − 1 2 L s 0 − L s 2 c o s ( 2 θ ) L s 0 − L s 2 c o s 2 ( θ + 2 π 3 ) ) ] L_s=\begin{bmatrix} L_{AA} & M_{AB} & M_{AC} \\ M_{BA} & L_{BB} & M_{BC} \\ M_{CA} & M_{CB} & L_{CC} \\ \end{bmatrix}=\begin{bmatrix} L_{s 0}-L_{s 2}cos2\theta & -\frac{1}{2}L_{s 0}-L_{s 2}cos(2 \theta-\frac{2\pi}{3}) & -\frac{1}{2}L_{s 0}-L_{s 2}cos(2 \theta+\frac{2\pi}{3}) \\ -\frac{1}{2}L_{s 0}-L_{s 2}cos(2 \theta-\frac{2\pi}{3}) & L_{s 0}-L_{s 2}cos2(\theta-\frac{2\pi}{3})) & -\frac{1}{2}L_{s 0}-L_{s 2}cos(2 \theta) \\ -\frac{1}{2}L_{s 0}-L_{s 2}cos(2 \theta+\frac{2\pi}{3}) & -\frac{1}{2}L_{s 0}-L_{s 2}cos(2 \theta) & L_{s 0}-L_{s 2}cos2(\theta+\frac{2\pi}{3})) \\ \end{bmatrix} Ls= LAAMBAMCAMABLBBMCBMACMBCLCC = Ls0−Ls2cos2θ−21Ls0−Ls2cos(2θ−32π)−21Ls0−Ls2cos(2θ+32π)−21Ls0−Ls2cos(2θ−32π)Ls0−Ls2cos2(θ−32π))−21Ls0−Ls2cos(2θ)−21Ls0−Ls2cos(2θ+32π)−21Ls0−Ls2cos(2θ)Ls0−Ls2cos2(θ+32π)) 现在矩阵中有 θ \theta θ也有 2 θ 2\theta 2θ,利用三角函数给它统一一下 L s = [ L s 0 − L s 2 c o s 2 θ − 1 2 L s 0 + L s 2 c o s 2 ( θ + π 6 ) − 1 2 L s 0 + L s 2 c o s 2 ( θ + 5 π 6 ) − 1 2 L s 0 + L s 2 c o s 2 ( θ + π 6 ) L s 0 − L s 2 c o s 2 ( θ − 2 π 3 ) ) − 1 2 L s 0 + L s 2 c o s 2 ( θ − π 2 ) − 1 2 L s 0 + L s 2 c o s 2 ( θ + 5 π 6 ) − 1 2 L s 0 + L s 2 c o s 2 ( θ − π 2 ) L s 0 − L s 2 c o s 2 ( θ + 2 π 3 ) ) ] L_s=\begin{bmatrix} L_{s 0}-L_{s 2}cos2\theta & -\frac{1}{2}L_{s 0}+L_{s 2}cos2( \theta+\frac{\pi}{6}) & -\frac{1}{2}L_{s 0}+L_{s 2}cos2( \theta+\frac{5\pi}{6}) \\ -\frac{1}{2}L_{s 0}+L_{s 2}cos2( \theta+\frac{\pi}{6}) & L_{s 0}-L_{s 2}cos2(\theta-\frac{2\pi}{3})) & -\frac{1}{2}L_{s 0}+L_{s 2}cos2( \theta-\frac{\pi}{2}) \\ -\frac{1}{2}L_{s 0}+L_{s 2}cos2( \theta+\frac{5\pi}{6}) & -\frac{1}{2}L_{s 0}+L_{s 2}cos2( \theta-\frac{\pi}{2}) & L_{s 0}-L_{s 2}cos2(\theta+\frac{2\pi}{3})) \\ \end{bmatrix} Ls= Ls0−Ls2cos2θ−21Ls0+Ls2cos2(θ+6π)−21Ls0+Ls2cos2(θ+65π)−21Ls0+Ls2cos2(θ+6π)Ls0−Ls2cos2(θ−32π))−21Ls0+Ls2cos2(θ−2π)−21Ls0+Ls2cos2(θ+65π)−21Ls0+Ls2cos2(θ−2π)Ls0−Ls2cos2(θ+32π))
4、永磁体磁链在三相坐标的分解
[ ψ A f ψ B f ψ C f ] = ψ f [ c o s θ c o s ( θ − 2 π 3 ) c o s ( θ + 2 π 3 ) ] \begin{bmatrix} \psi_{Af} \\ \psi_{Bf } \\ \psi_{Cf }\\ \end{bmatrix}=\psi_{f} \begin{bmatrix} cos \theta \\ cos (\theta-\frac{2 \pi}{3})\\ cos (\theta+\frac{2 \pi}{3})\\ \end{bmatrix} ψAfψBfψCf =ψf cosθcos(θ−32π)cos(θ+32π)
5、磁链方程
[ ψ A ψ B ψ C ] = [ L A A M A B M A C M B A L B B M B C M C A M C B L C C ] [ i A i B i C ] + [ ψ A f ψ B f ψ C f ] \begin{bmatrix} \psi_A \\ \psi_B \\ \psi_C \\ \end{bmatrix}=\begin{bmatrix} L_{AA} & M_{AB} & M_{AC} \\ M_{BA} & L_{BB} & M_{BC} \\ M_{CA} & M_{CB} & L_{CC} \\ \end{bmatrix} \begin{bmatrix} i_A \\ i_B \\ i_C \\ \end{bmatrix}+ \begin{bmatrix} \psi_{Af} \\ \psi_{Bf } \\ \psi_{Cf }\\ \end{bmatrix} ψAψBψC = LAAMBAMCAMABLBBMCBMACMBCLCC iAiBiC + ψAfψBfψCf [ ψ A ψ B ψ C ] = L s 0 [ 1 − 1 2 − 1 2 − 1 2 1 − 1 2 − 1 2 − 1 2 1 ] [ i A i B i C ] + L s 2 [ − c o s 2 θ c o s 2 ( θ + π 6 ) c o s 2 ( θ + 5 π 6 ) c o s 2 ( θ + π 6 ) − c o s 2 ( θ − 2 π 3 ) ) c o s 2 ( θ − π 2 ) c o s 2 ( θ + 5 π 6 ) c o s 2 ( θ − π 2 ) − c o s 2 ( θ + 2 π 3 ) ) ] [ i A i B i C ] + ψ f [ c o s θ c o s ( θ − 2 π 3 ) c o s ( θ + 2 π 3 ) ] \begin{bmatrix} \psi_A \\ \psi_B \\ \psi_C \\ \end{bmatrix}=L_{s0}\begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & 1 & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} & 1 \\ \end{bmatrix} \begin{bmatrix} i_A \\ i_B \\ i_C \\ \end{bmatrix}+L_{s2}\begin{bmatrix} -cos2\theta &cos2( \theta+\frac{\pi}{6}) &cos2( \theta+\frac{5\pi}{6}) \\ cos2( \theta+\frac{\pi}{6}) &-cos2(\theta-\frac{2\pi}{3})) &cos2( \theta-\frac{\pi}{2}) \\ cos2( \theta+\frac{5\pi}{6}) & cos2( \theta-\frac{\pi}{2}) & -cos2(\theta+\frac{2\pi}{3})) \\ \end{bmatrix} \begin{bmatrix} i_A \\ i_B \\ i_C \\ \end{bmatrix}+\psi_{f} \begin{bmatrix} cos \theta \\ cos (\theta-\frac{2 \pi}{3})\\ cos (\theta+\frac{2 \pi}{3})\\ \end{bmatrix} ψAψBψC =Ls0 1−21−21−211−21−21−211 iAiBiC +Ls2 −cos2θcos2(θ+6π)cos2(θ+65π)cos2(θ+6π)−cos2(θ−32π))cos2(θ−2π)cos2(θ+65π)cos2(θ−2π)−cos2(θ+32π)) iAiBiC +ψf cosθcos(θ−32π)cos(θ+32π)
五、三相坐标系转矩方程
这块查了些资料,基本是用能量法计算的,没有完全理解,先记录一下吧。
首先说明一下电机的能量守恒:电源输送的净电能增量
d
W
e
dW_e
dWe应等于电动机磁场能量的增量
d
W
m
dW_m
dWm与电动机输出机械功率增量
d
W
m
e
c
h
dW_{mech}
dWmech,要注意的是,这里提到的输入电能是净电能,也就是扣除电阻等损耗之后的能量,所以,这里提到的输入电机绕组的电能转换为两个部分,一部分是磁场储能,另一部分转化为机械能,可以列出来:
d
W
e
=
d
W
m
+
d
W
m
e
c
h
dW_e=dW_m+dW_{mech}
dWe=dWm+dWmech根据定子电压方程:
U
k
=
R
k
i
k
+
d
ψ
k
d
t
U_k=R_ki_k+\frac{d\psi_k}{dt}
Uk=Rkik+dtdψk方程两边同乘
i
k
i_k
ik后得到该绕组的功率,再乘以
d
t
dt
dt得到能量,也就是说:
d
W
e
=
(
U
k
−
R
k
i
k
)
i
k
d
t
=
i
k
d
ψ
k
dW_e=(U_k-R_ki_k)i_kd_t=i_kd\psi_k
dWe=(Uk−Rkik)ikdt=ikdψk而磁场储能可以被表示为:
d
W
m
=
1
2
i
k
d
ψ
k
dW_m=\frac{1}{2}i_kd\psi_k
dWm=21ikdψk不理解为啥这么表示,上来就是这么个公式,好像电机学和电拖课程里有讲,回头看看。
现在,机械能部分可以被表示为:
d
W
m
e
c
h
=
T
e
d
θ
m
=
d
W
e
−
d
W
m
=
d
W
m
=
1
2
i
k
d
ψ
k
dW_{mech}=T_ed{\theta}_m=dW_e-dW_m=dW_m=\frac{1}{2}i_kd\psi_k
dWmech=Tedθm=dWe−dWm=dWm=21ikdψk可以看出,机械能量与电流和磁链均相关,那么,力矩可以表示为:
T
e
=
∂
W
m
∂
θ
m
=
n
p
∂
W
m
∂
θ
e
=
n
p
2
∂
(
i
k
ψ
k
)
∂
θ
e
T_e=\frac{\partial W_m}{\partial \theta_m}=n_p\frac{\partial W_m}{\partial \theta_e}=\frac{n_p}{2}\frac{\partial( i_k\psi_k)}{\partial \theta_e}
Te=∂θm∂Wm=np∂θe∂Wm=2np∂θe∂(ikψk)这里的
θ
m
\theta_m
θm、
θ
e
\theta_e
θe分别是机械角度和电角度,
n
p
n_p
np是极对数。接下来就是把上边计算到的磁链方程代入计算,得到:
T
e
=
n
p
[
i
A
i
B
i
C
]
L
s
2
[
−
s
i
n
2
θ
s
i
n
2
(
θ
+
π
6
)
s
i
n
2
(
θ
+
5
π
6
)
s
i
n
2
(
θ
+
π
6
)
−
s
i
n
2
(
θ
−
2
π
3
)
)
s
i
n
2
(
θ
−
π
2
)
s
i
n
2
(
θ
+
5
π
6
)
s
i
n
2
(
θ
−
π
2
)
−
s
i
n
2
(
θ
+
2
π
3
)
)
]
[
i
A
i
B
i
C
]
+
1
2
n
p
ψ
f
[
i
A
i
B
i
C
]
[
s
i
n
θ
s
i
n
(
θ
−
2
π
3
)
s
i
n
(
θ
+
2
π
3
)
]
T_e=n_p\begin{bmatrix} i_A & i_B& i_C \end{bmatrix}L_{s2}\begin{bmatrix} -sin2\theta &sin2( \theta+\frac{\pi}{6}) &sin2( \theta+\frac{5\pi}{6}) \\ sin2( \theta+\frac{\pi}{6}) &-sin2(\theta-\frac{2\pi}{3})) &sin2( \theta-\frac{\pi}{2}) \\ sin2( \theta+\frac{5\pi}{6}) & sin2( \theta-\frac{\pi}{2}) & -sin2(\theta+\frac{2\pi}{3})) \\ \end{bmatrix}\begin{bmatrix} i_A \\ i_B\\ i_C\\ \end{bmatrix}+\frac{1}{2}n_p\psi_f\begin{bmatrix} i_A & i_B& i_C \end{bmatrix}\begin{bmatrix} sin \theta \\ sin (\theta-\frac{2 \pi}{3})\\ sin (\theta+\frac{2 \pi}{3})\\ \end{bmatrix}
Te=np[iAiBiC]Ls2
−sin2θsin2(θ+6π)sin2(θ+65π)sin2(θ+6π)−sin2(θ−32π))sin2(θ−2π)sin2(θ+65π)sin2(θ−2π)−sin2(θ+32π))
iAiBiC
+21npψf[iAiBiC]
sinθsin(θ−32π)sin(θ+32π)
也请各位大佬看看这块算的有没有问题
六、三相坐标系运动方程
运动方程比较明确:
T
e
=
T
L
+
B
ω
+
J
d
ω
d
t
T_e=T_L+B\omega+J\frac{d\omega}{dt}
Te=TL+Bω+Jdtdω这里的
B
B
B为摩擦系数,
ω
\omega
ω为机械角速度,
T
L
T_L
TL为负载转矩,
J
J
J为转动惯量