前言
本部分内容是对于永磁同步电机控制过程中可能涉及到的经典控制理论的学习,旨在记录自己的学习过程以及对知识点的一些理解,参考的文章会附上链接。若有理解不到位的地方,希望各位大佬批评指正。
本部分内容参考文章为:
王天威老师的控制之美
一、线性时不变系统
首先理解一下什么是线性时不变系统,所谓线性是指系统的输入输出满足线性映射关系,符合叠加原理,对于一个系统,在输入
u
1
(
t
)
、
u
2
(
t
)
u_1(t)、u_2(t)
u1(t)、u2(t)作用下,输出分别是
x
1
(
t
)
、
x
2
(
t
)
x_1(t)、x_2(t)
x1(t)、x2(t),那么当输入为
u
1
(
t
)
+
u
2
(
t
)
u_1(t)+u_2(t)
u1(t)+u2(t)时,输出是
x
1
(
t
)
+
x
2
(
t
)
x_1(t)+x_2(t)
x1(t)+x2(t),当输入为
a
u
1
(
t
)
+
b
u
2
(
t
)
au_1(t)+bu_2(t)
au1(t)+bu2(t)时(
a
,
b
a,b
a,b为常数),输出是
a
x
1
(
t
)
+
b
x
2
(
t
)
ax_1(t)+bx_2(t)
ax1(t)+bx2(t)。时不变是指系统的输出不以时间为转移,假设输入
u
1
(
t
)
u_1(t)
u1(t)输出
x
1
(
t
)
x_1(t)
x1(t),那么延时T时间给系统施加相同幅值的输入,即输入为
u
1
(
t
−
T
)
u_1(t-T)
u1(t−T),输出幅值也不会变化,相位延时T时间,即输出为
x
1
(
t
−
T
)
x_1(t-T)
x1(t−T)。
把王老师著作中的两个例子搬过来举个例子:
(1)
a
d
2
x
(
t
)
d
t
2
+
b
d
x
(
t
)
d
t
+
c
(
t
)
x
(
t
)
=
u
(
t
)
a\frac{d^2x(t)}{dt^2}+b\frac{dx(t)}{dt}+c(t)x(t)=u(t)
adt2d2x(t)+bdtdx(t)+c(t)x(t)=u(t)
该系统为线性系统,因为等式左边的
x
(
t
)
x(t)
x(t)替换成
x
1
(
t
)
+
x
2
(
t
)
x_1(t)+x_2(t)
x1(t)+x2(t),等式右边
u
(
t
)
u(t)
u(t)替换成
u
1
(
t
)
+
u
2
(
t
)
u_1(t)+u_2(t)
u1(t)+u2(t)等式仍然成立,但该系统不是时不变系统,因为
x
(
t
)
x(t)
x(t)项前边的系数
c
(
t
)
c(t)
c(t)不是常数,而是随时间变化的变量。
(2)
a
d
2
x
(
t
)
d
t
2
+
b
d
x
(
t
)
d
t
+
s
i
n
x
(
t
)
=
u
(
t
)
a\frac{d^2x(t)}{dt^2}+b\frac{dx(t)}{dt}+sinx(t)=u(t)
adt2d2x(t)+bdtdx(t)+sinx(t)=u(t)
该系统为时不变系统,对于任意时刻,等式都满足,但它不是线性系统,因为,
s
i
n
x
1
(
t
)
+
s
i
n
x
2
(
t
)
≠
s
i
n
(
x
1
(
t
)
+
x
2
(
t
)
)
sinx_1(t)+sinx_2(t)≠sin(x_1(t)+x_2(t))
sinx1(t)+sinx2(t)=sin(x1(t)+x2(t))
二、拉氏变换
拉氏变换将时域上的函数 f ( t ) f(t) f(t)转换成复数域上的函数 F ( s ) F(s) F(s),通过拉氏变换可以非常神奇地将系统中的积分项、微分项消除,变成简单的加减乘除,拉氏变换的定义是: £ [ f ( t ) ] = F ( s ) = ∫ 0 ∞ f ( t ) e − s t d t \pounds [f(t)]=F(s)=\int_{0}^{\infty}f(t)e^{-st}dt £[f(t)]=F(s)=∫0∞f(t)e−stdt其中 s = σ ± j ω s= \sigma±j\omega s=σ±jω列出几个常用的拉氏变换和性质
原函数 | 拉氏变换 |
---|---|
e − a t e^{-at} e−at | 1 s + a \frac{1}{s+a} s+a1 |
a ∗ f ( t ) + b ∗ g ( t ) a*f(t)+b*g(t) a∗f(t)+b∗g(t) | a ∗ F ( s ) + b ∗ G ( s ) a*F(s)+b*G(s) a∗F(s)+b∗G(s) |
s i n ( a t ) sin(at) sin(at) | a s 2 + a 2 \frac{a}{s^2+a^2} s2+a2a |
d f ( t ) d t \frac{df(t)}{dt} dtdf(t) | s F ( s ) − f ( 0 ) sF(s)-f(0) sF(s)−f(0) |
d 2 f ( t ) d t \frac{d^2f(t)}{dt} dtd2f(t) | s 2 F ( s ) − s f ( 0 ) − f ˊ ( 0 ) s^2F(s)-sf(0)-\'f(0) s2F(s)−sf(0)−fˊ(0) |
c o s ( a t ) cos(at) cos(at) | s s 2 + a 2 \frac{s}{s^2+a^2} s2+a2s |
δ ( t ) \delta(t) δ(t) | 1 |
1 | 1 s \frac{1}{s} s1 |
∫ 0 ∞ f ( u ) d u \int_{0}^{\infty }f(u)du ∫0∞f(u)du | F ( s ) s \frac{F(s)}{s} sF(s) |
从表格中注意到两个特别的拉氏变换的形式,一个是对积分的拉氏变换一个是对微分的拉氏变换,可以看出来,对积分进行拉氏变换后,多出来一个 1 s \frac{1}{s} s1,而在初始条件为0时,微分进行拉氏变换后,多出来一个 s s s,因此,会将 1 s \frac{1}{s} s1表示为积分环节, s s s表示为微分环节。
三、传递函数
传递函数的定义是:在零初始条件下,系统输出的拉普拉斯变换与系统输入的拉普拉斯变换之间的比值,即:
G
(
s
)
=
X
(
s
)
U
(
s
)
G(s)=\frac{X(s)}{U(s)}
G(s)=U(s)X(s)传递函数其实反映的是系统对单位单位冲击函数的响应,也可以说传递函数就是系统的具体体现。这里我们拿电机dq坐标系下的d轴电压方程为例,求解其传递函数,首先,d轴电压方程搬过来:
u
d
=
R
i
d
+
L
d
d
i
d
d
t
−
ω
L
q
i
q
u_d=Ri_d+L_d\frac{di_d}{dt}-\omega L_qi_q
ud=Rid+Lddtdid−ωLqiq我们希望得到d轴电压和电流之间的关系,实际电机控制过程中,通过SVPWM调制输入三相桥的电压,从而达到控制电机旋转的目的,因此,电压为系统的输入,电流为系统的输出,但观察到d轴电压方程中有来自q轴的耦合项,首先对d轴方程变形:
u
d
0
=
u
d
+
ω
L
q
i
q
=
R
i
d
+
L
d
d
i
d
d
t
u_{d0}=u_d+\omega L_qi_q=Ri_d+L_d\frac{di_d}{dt}
ud0=ud+ωLqiq=Rid+Lddtdid这样,
u
d
0
与
i
d
u_{d0}与i_d
ud0与id之间满足线性时不变系统,对其进行拉氏变换:
U
d
0
(
S
)
=
R
I
d
(
S
)
+
S
L
d
I
d
(
S
)
−
i
d
(
0
)
U_{d0}(S)=RI_d(S)+SL_dI_d(S)-i_d(0)
Ud0(S)=RId(S)+SLdId(S)−id(0)在初始状态下d轴电流为0,因此
i
d
(
0
)
=
0
i_d(0)=0
id(0)=0,可以求得系统传递函数为:
G
(
s
)
=
I
d
(
S
)
U
d
0
(
S
)
=
1
R
+
S
L
d
G(s)=\frac{I_d(S)}{U_{d0}(S)}=\frac{1}{R+SL_d}
G(s)=Ud0(S)Id(S)=R+SLd1系统及其传递函数可以用如图1所示的框图表示:
而对于前边计算的d轴电压电流可以用框图表示为图2:

这样,我们就得到了d轴电流电压之间的开环传递函数,问题是,怎么才能得到
U
d
0
(
S
)
U_{d0}(S)
Ud0(S),设想一下,我们想要把电风扇调节至高速模式,首先需要按下高速档,然后控制器会根据高速档指令给风机施加更大的电压,这时风机转速就加快了,这里的
U
d
0
(
S
)
U_{d0}(S)
Ud0(S)同理,需要一个参考,或者说基准,告诉
U
d
0
(
S
)
U_{d0}(S)
Ud0(S)要到哪里去,还需要一个控制器告诉
U
d
0
(
S
)
U_{d0}(S)
Ud0(S)应该怎么走,于是就有图3:
目标参考值为常数,用
R
e
f
Ref
Ref表示,对该参考值进行拉氏变换会得到
R
e
f
S
\frac{Ref}{S}
SRef,图中的
C
(
S
)
C(S)
C(S)方框代表控制器,虚线框内就是一个开环控制系统了。假设现在控制器就是一个比例环节,相当于给系统添加一个增益K,那么虚线框中的控制系统传递函数可以表示为:
G
(
S
)
=
C
(
S
)
1
R
+
L
d
S
=
K
R
+
L
d
S
G(S)=C(S)\frac{1}{R+L_dS}=\frac{K}{R+L_dS}
G(S)=C(S)R+LdS1=R+LdSK现在我想知道,针对上边的
G
(
S
)
G(S)
G(S),输入一个阶跃信号,输出怎么变化,这就需要将传递函数从复数域转化到时域,假设阶跃信号拉氏变换为
1
S
\frac{1}{S}
S1,那么首先,对上述传函进行因式分解:
I
d
(
S
)
=
1
S
G
(
S
)
=
K
L
d
1
S
(
R
L
d
+
S
)
=
K
L
d
(
A
S
+
B
R
L
d
+
S
)
)
I_d(S)=\frac{1}{S}G(S)=\frac{K}{L_d}\frac{1}{S(\frac{R}{L_d}+S)}=\frac{K}{L_d}(\frac{A}{S}+\frac{B}{\frac{R}{L_d}+S)})
Id(S)=S1G(S)=LdKS(LdR+S)1=LdK(SA+LdR+S)B)求解出A,B就可以将复杂的二阶传递函数转换为两个一阶传函相加:
A
(
R
L
d
+
S
)
+
B
S
=
1
⇒
{
A
R
L
d
=
1
A
S
+
B
S
=
0
⇒
{
A
=
L
d
R
B
=
−
L
d
R
A(\frac{R}{L_d}+S)+BS=1 \Rightarrow \left\{\begin{matrix} A\frac{R}{L_d}=1\\ \\AS+BS=0 \end{matrix}\right.\Rightarrow \left\{\begin{matrix} A=\frac{L_d}{R}\\ \\B=-\frac{L_d}{R} \end{matrix}\right.
A(LdR+S)+BS=1⇒⎩
⎨
⎧ALdR=1AS+BS=0⇒⎩
⎨
⎧A=RLdB=−RLd根据上一章节拉普拉斯变换表能够写出系统时域下的表达为:
i
d
(
t
)
=
K
R
−
K
R
e
−
R
L
d
t
i_d(t)=\frac{K}{R}-\frac{K}{R}e^{-\frac{R}{L_d}t}
id(t)=RK−RKe−LdRt
假设这里的增益
K
=
2
K=2
K=2,电阻
R
=
0.1825
R=0.1825
R=0.1825,电感
L
d
=
5
e
−
3
L_d=5e^{-3}
Ld=5e−3,当输入为阶跃信号时,输出变化如图4
也没啥特别的,从输出拉了一根线引到输入来,就是一个负反馈的过程。再来仿真一下。
尽管也没有完全到达输入参考值1的位置,但至少没有开环那么离谱,距离设定值已经很接近了。图6中输入与输出之间的误差也能说明一个问题,那就是纯比例控制不能消除稳态误差。
我们把图5中的输入看作
R
(
S
)
R(S)
R(S),输出看作
X
(
S
)
X(S)
X(S),控制器还用
C
(
S
)
C(S)
C(S)表示,系统传函看作
G
(
S
)
G(S)
G(S),可以列出闭环系统下的闭环传函:
X
(
S
)
=
(
R
(
S
)
−
X
(
S
)
)
C
(
S
)
G
(
S
)
⇒
X
(
S
)
R
(
S
)
=
C
(
S
)
G
(
S
)
1
+
C
(
S
)
G
(
S
)
X(S)=(R(S)-X(S))C(S)G(S) \Rightarrow \frac{X(S)}{R(S)}=\frac{C(S)G(S)}{1+C(S)G(S)}
X(S)=(R(S)−X(S))C(S)G(S)⇒R(S)X(S)=1+C(S)G(S)C(S)G(S)这就是开环传递函数与闭环传递函数之间的关系,当然如果反馈回路通过传递函数
H
(
S
)
H(S)
H(S)接到输入,那系统传函会变成
X
(
S
)
R
(
S
)
=
C
(
S
)
G
(
S
)
1
+
H
(
S
)
C
(
S
)
G
(
S
)
\frac{X(S)}{R(S)}=\frac{C(S)G(S)}{1+H(S)C(S)G(S)}
R(S)X(S)=1+H(S)C(S)G(S)C(S)G(S)可以求出图5闭环系统传函
I
d
(
S
)
R
(
S
)
=
K
R
+
S
L
d
1
+
K
R
+
S
L
d
=
K
R
+
K
+
S
L
d
\frac{I_d(S)}{R(S)}=\frac{\frac{K}{R+SL_d}}{1+\frac{K}{R+SL_d}}=\frac{K}{R+K+SL_d}
R(S)Id(S)=1+R+SLdKR+SLdK=R+K+SLdK
四、系统稳定性
通过系统传递函数的零点和极点可以比较直观的看出系统稳定性,首先说明一下极点和零点分别是啥,传递函数分子多项式的根称为零点,分母多项式的点称为极点,简单来说,让分子等于零,求得S的解就是零点,相对应的,分母等于零,求得S的解是极点。以图2所示的传递函数为例
G
(
s
)
=
I
d
(
S
)
U
d
0
(
S
)
=
1
R
+
S
L
d
G(s)=\frac{I_d(S)}{U_{d0}(S)}=\frac{1}{R+SL_d}
G(s)=Ud0(S)Id(S)=R+SLd1传函有一个极点,
S
=
−
R
L
d
S=-\frac{R}{L_d}
S=−LdR,没有零点。一般在复数域用×表示极点,用
∘
\circ
∘表示零点,假设电阻
R
=
0.1825
R=0.1825
R=0.1825,电感
L
d
=
5
e
−
3
L_d=5e^{-3}
Ld=5e−3,传函的零点极点分布和冲击响应如图7所示。
为什么这里要用单位冲击作为输入,可以回过头看一下表1,单位冲击的拉氏变换为1,也就是说,当输入为单位冲击时,输出为该系统的传递函数,相当于分析系统本身,而不会引入外部零点极点。从图7可以看出,当传函极点位于复数域左半平面时,系统在受到单位冲击输入时,随时间增加,输出最终趋向于0,这样的系统就是稳定的。当传函极点位于复数域右半平面时,如图8所示,输出最终发散,这样的系统是不稳定的。
假设系统有一对位于复数域左半平面的共轭复极点,冲击响应如图9所示。与图7所示的一阶系统的冲击响应不同,它对于单位冲击输入的响应并不是单调变化的,从图9能够看出共轭极点为 S = − 1 ± 1.5 j S=-1±1.5j S=−1±1.5j,因此该系统的传递函数可以写为如下形式: G ( S ) = 1 ( S + 1 + 1.5 j ) ( S + 1 − 1.5 j ) = j 3 ( S + 1 + 1.5 j ) − j 3 ( S + 1 − 1.5 j ) G(S)=\frac{1}{(S+1+1.5j)(S+1-1.5j)}=\frac{j}{3(S+1+1.5j)}-\frac{j}{3(S+1-1.5j)} G(S)=(S+1+1.5j)(S+1−1.5j)1=3(S+1+1.5j)j−3(S+1−1.5j)j在时域下 g ( t ) = j 3 ( e ( − 1 − 1.5 j ) t − e ( − 1 + 1.5 j ) t ) = j 3 e − t ( e − 1.5 j t − e 1.5 j t ) g(t)=\frac{j}{3}(e^{(-1-1.5j)t}-e^{(-1+1.5j)t})=\frac{j}{3}e^{-t}(e^{-1.5jt}-e^{1.5jt}) g(t)=3j(e(−1−1.5j)t−e(−1+1.5j)t)=3je−t(e−1.5jt−e1.5jt)借助欧拉公式: g ( t ) = − j 3 e − t 2 s i n ( 1.5 t ) j = 2 3 e − t s i n ( 1.5 t ) g(t)=-\frac{j}{3}e^{-t}2sin(1.5t)j=\frac{2}{3}e^{-t}sin(1.5t) g(t)=−3je−t2sin(1.5t)j=32e−tsin(1.5t)在该传函中,系统输出同时受到 e − t e^{-t} e−t和 s i n ( 1.5 t ) sin(1.5t) sin(1.5t)的影响,正弦函数会带来振动,随着时间增加,指数函数趋近于零,整个系统输出也将趋近于0,因此,极点是位于复数域左半平面的共轭复数时,系统会有震荡,但最终趋于稳定。从图9中也能够看出,系统是欠阻尼的情况,
当系统有一对在复数域右半平面的极点时,随着时间变化,系统输出总会发散,这样的系统是不稳定的。
从上边的例子可以看出来,极点会决定系统是否稳定,极点位于复数域左半平面则系统稳定,系统有任意一个极点位于复数域右半平面都将导致系统不稳定。另外,位于左半平面的极点距离虚轴越近,系统响应越慢,否则,系统响应越快,从数学的角度理解,就是自然常数的指数越大,衰减越快,也可以把它类比为物理学中电容的大小,极点距离虚轴越远,证明系统截至频率越大,系统带宽就越宽,相当于电容越小,那它自然响应更快。零点虽然对系统稳定性没有决定性影响,但它会影响系统趋于稳定的走势,如图12所示。
五、伯德图
伯德图由系统的振幅响应和相位响应组成,其中振幅响应的纵坐标表示为
20
l
o
g
M
o
M
i
20log\frac{M_o}{M_i}
20logMiMo,
M
o
M_o
Mo、
M
i
M_i
Mi分别代表系统的输出振幅与输入振幅,横坐标为十倍频分度。伯德图是分析频率响应的工具,因此,需要将系统的传递函数做个变形,比如,我们需要分析一阶系统的频响,以图2所示的传递函数为例
G
(
s
)
=
I
d
(
S
)
U
d
0
(
S
)
=
1
R
+
S
L
d
G(s)=\frac{I_d(S)}{U_{d0}(S)}=\frac{1}{R+SL_d}
G(s)=Ud0(S)Id(S)=R+SLd1R=0.1825,
L
d
=
0.00525
L_d=0.00525
Ld=0.00525
首先要将传函中的S用
j
ω
j\omega
jω代替,有:
G
(
j
ω
)
=
1
R
+
j
ω
L
d
=
R
−
j
ω
L
d
(
R
+
j
ω
L
d
)
(
R
−
j
ω
L
d
)
=
R
R
2
+
ω
2
L
d
2
−
ω
L
d
R
2
+
ω
2
L
d
2
j
G(j\omega)=\frac{1}{R+j\omega L_d}=\frac{R-j\omega L_d}{(R+j\omega L_d)(R-j\omega L_d)}=\frac{R}{R^2+\omega^2 L_d^2}-\frac{\omega L_d}{R^2+\omega^2 L_d^2}j
G(jω)=R+jωLd1=(R+jωLd)(R−jωLd)R−jωLd=R2+ω2Ld2R−R2+ω2Ld2ωLdj实部部分为
R
R
2
+
ω
2
L
d
2
\frac{R}{R^2+\omega^2 L_d^2}
R2+ω2Ld2R,虚部部分为
−
ω
L
d
R
2
+
ω
2
L
d
2
-\frac{\omega L_d}{R^2+\omega^2 L_d^2}
−R2+ω2Ld2ωLd,幅值为实部与虚部平方和的开方根
∣
G
(
j
ω
)
∣
=
(
R
R
2
+
ω
2
L
d
2
)
2
+
(
−
ω
L
d
R
2
+
ω
2
L
d
2
)
2
=
1
R
2
+
ω
2
L
d
2
|G(j\omega)|=\sqrt{(\frac{R}{R^2+\omega^2 L_d^2})^2+(-\frac{\omega L_d}{R^2+\omega^2 L_d^2})^2}=\sqrt{\frac{1}{R^2+\omega^2L_d^2}}
∣G(jω)∣=(R2+ω2Ld2R)2+(−R2+ω2Ld2ωLd)2=R2+ω2Ld21相位为:
∠
G
(
j
ω
)
=
a
r
c
t
a
n
−
ω
L
d
R
2
+
ω
2
L
d
2
R
R
2
+
ω
2
L
d
2
=
−
a
r
c
t
a
n
ω
L
d
R
\angle G(j\omega)=arctan \frac{-\frac{\omega L_d}{R^2+\omega^2 L_d^2}}{\frac{R}{R^2+\omega^2 L_d^2}}=-arctan \frac{\omega L_d}{R}
∠G(jω)=arctanR2+ω2Ld2R−R2+ω2Ld2ωLd=−arctanRωLd当输入信号频率为0时,在伯德图中幅频特性为
20
l
o
g
∣
G
(
j
ω
)
∣
=
20
l
o
g
1
R
≈
14.8
d
B
20log|G(j\omega)|=20log\frac{1}{R}\approx 14.8dB
20log∣G(jω)∣=20logR1≈14.8dB相频特性为:
∠
G
(
j
ω
)
=
−
a
r
c
t
a
n
(
0
)
=
0
°
\angle G(j\omega)=-arctan(0)=0°
∠G(jω)=−arctan(0)=0°当输入信号频率为
R
L
d
\frac{R}{L_d}
LdR时,在伯德图中幅频特性为
20
l
o
g
∣
G
(
j
ω
)
∣
=
20
l
o
g
1
2
R
≈
11.8
d
B
20log|G(j\omega)|=20log\frac{1}{\sqrt{2}R}\approx 11.8dB
20log∣G(jω)∣=20log2R1≈11.8dB相频特性为:
∠
G
(
j
ω
)
=
−
a
r
c
t
a
n
(
1
)
=
−
45
°
\angle G(j\omega)=-arctan(1)=-45°
∠G(jω)=−arctan(1)=−45°该频率点为系统的截至频率点,也叫-3dB带宽。
画出伯德图如图13所示。
除此之外积分系统,比例系统伯德图如图14所示。
伯德图可以将复杂的串联系统分解为简单的系统的叠加,例如,对于一个图14所示的串联系统
在分析系统频率响应时,将S用
j
ω
j\omega
jω代替,系统的幅值增益为:
G
a
i
n
=
∣
G
1
(
j
ω
)
G
2
(
j
ω
)
∣
=
∣
G
1
(
j
ω
)
∣
∣
G
2
(
j
ω
)
∣
Gain=|G_1(j\omega)G_2(j\omega)|=|G_1(j\omega)||G_2(j\omega)|
Gain=∣G1(jω)G2(jω)∣=∣G1(jω)∣∣G2(jω)∣而在伯德图中,系统幅值增益将被表示为:
G
a
i
n
b
o
d
e
=
20
l
o
g
∣
G
1
(
j
ω
)
G
2
(
j
ω
)
∣
=
20
l
o
g
∣
G
1
(
j
ω
)
∣
+
20
l
o
g
∣
G
2
(
j
ω
)
∣
Gain_{bode}=20log|G_1(j\omega)G_2(j\omega)|=20log|G_1(j\omega)|+20log|G_2(j\omega)|
Gainbode=20log∣G1(jω)G2(jω)∣=20log∣G1(jω)∣+20log∣G2(jω)∣经过
G
1
(
S
)
G_1(S)
G1(S)、
G
2
(
S
)
G_2(S)
G2(S)后,相位变化为:
∠
G
1
(
j
ω
)
G
2
(
j
ω
)
=
∠
G
1
(
j
ω
)
+
∠
G
2
(
j
ω
)
\angle G_1(j\omega)G_2(j\omega)= \angle G_1(j\omega)+ \angle G_2(j\omega)
∠G1(jω)G2(jω)=∠G1(jω)+∠G2(jω)所以,可以通过将复杂的系统分解为常见的系统串联,从而达到简化分析的目的。
列一下几个基本环节
基本环节 | 传递函数 | 波特图 |
---|---|---|
比例环节 | K K K | ![]() |
惯性环节 | 1 T s + 1 \frac{1}{Ts+1} Ts+11 | ![]() |
一阶微分环节 | τ s + 1 \tau s+1 τs+1 | ![]() |
积分环节 | 1 S \frac{1}{S} S1 | ![]() |
微分环节 | S S S | ![]() |
震荡环节 震荡环节 震荡环节 | ω 2 s 2 + 2 ω ζ s + ω 2 \frac{\omega^2}{s^2+2\omega \zeta s+\omega^2} s2+2ωζs+ω2ω2 | ![]() |
二阶微分环节 | s 2 + 2 ω ζ s + ω 2 s^2+2\omega \zeta s+\omega^2 s2+2ωζs+ω2 | ![]() |
延时环节 | e − τ s e^{-\tau s} e−τs | ![]() |
举个例子,对于开环传递函数
G
(
S
)
=
10
(
S
+
0.1
)
S
2
(
S
+
10
)
G(S)=\frac{10(S+0.1)}{S^2(S+10)}
G(S)=S2(S+10)10(S+0.1)可以看作由比例环节
K
=
10
K=10
K=10,一阶微分环节
S
+
0.1
S+0.1
S+0.1,两个积分环节
1
S
\frac{1}{S}
S1,以及一个惯性环节
1
S
+
10
\frac{1}{S+10}
S+101组成,按照伯德图的串联叠加原理以及上表列出的几种基本环节的伯德图,能够绘制出该开环传递函数的伯德图。
通过开环传函的伯德图也能够看出闭环的特性,还是以上述开环传函为例,它的闭环传函可以绘制为
可以通过三段频法来分析系统性能,低频段是指伯德图第一个转折频率之前的区间,对应图15中的一阶微分环节截至频率
0.1
r
a
d
/
s
0.1rad/s
0.1rad/s,中频段指开环伯德图幅值曲线穿越
0
d
B
0dB
0dB的频率(
ω
c
\omega_c
ωc)附近的频率,高频段指
10
ω
c
10\omega_c
10ωc以上频率区间。三频段理论主要有以下内容:
1、一般来说,希望低频段高、陡,因为低频段高、陡代表了开环增益大,积分环节数目多,在系统稳定后,稳态误差小,系统稳态精度高。
2、中频段决定了系统动态性能。希望中频段要宽,同时要以
−
20
d
B
-20dB
−20dB斜率穿越
0
d
B
0dB
0dB线,从图15、图16可以看出,两段
−
40
d
B
-40dB
−40dB斜率线对应的相位裕度较小,系统难以保持稳定,而
−
20
d
B
-20dB
−20dB斜率线对应的相位裕度相对较大,中频段范围越宽,
ω
c
\omega_c
ωc对应的相位滞后越接近90°,系统的相位裕度越高,一般来讲,希望系统的相位裕度不低于60°。
3、希望高频段低,高频段反映了系统对高频干扰信号的抑制能力,高频段越低,对干扰的抑制能力越强。
先写这么多吧,有点散,主要是后边仿真可能会用到,先记录一下。