本篇文章使用经典的串级 PI 控制器控制永磁无刷电机的电流环和速度环,讨论了系统的建模和控制器的参数整定。
一. 电流环设计
电机电流环传递函数如下:
电机的传递函数为
1
/
(
R
+
L
s
)
1/(R+Ls)
1/(R+Ls),
R
R
R 和
L
L
L 分别为电机的相电阻和相电感。使用一阶低通滤波器对反馈电流进行滤波,其传递函数为
1
/
(
1
+
T
f
s
)
1/(1+T_fs)
1/(1+Tfs),其中
T
f
T_f
Tf 为滤波器的时间常数。采用 PI 控制器进行控制,串联型 PI 控制器的传递函数为
K
p
(
K
i
+
s
)
/
s
K_p(K_i+s)/s
Kp(Ki+s)/s,并联型 PI 控制器的传递函数为
(
K
p
s
+
K
i
)
/
s
(K_ps+K_i)/s
(Kps+Ki)/s,本文为方便进行零点配置,推导时使用的是串联型的 PI 控制器,但在最后也会给出并联型 PI 控制器参数的推导公式。逆变器的传递函数为一个延时环节,对于7段式 SVPWM 调制来说,其延时
T
p
T_p
Tp 等于
T
d
/
2
T_d/2
Td/2(在有些设计中按最大延时考虑,即
T
d
T_d
Td ),
T
d
T_d
Td 为电流环的一个计算周期。同时,考虑到控制器是离散的,整个回路中还有
T
d
T_d
Td 的延时。
在框图中,我们没有考虑反电动势的影响,因为对电流环来说,反电动势是一个慢变的扰动,只要电流环的带宽足够大,就可以忽略反电动势项的影响。忽略反电动势影响的条件如下,其中,
w
b
w_b
wb 为电流环的闭环带宽,
T
e
T_e
Te 为电机的电磁时间常数,
T
m
T_m
Tm 为电机的机电时间常数,详细推导见第三节。
w
b
≥
3
1
T
e
T
m
w_b \ge 3\sqrt{\frac{1}{T_eT_m}}
wb≥3TeTm1
若电流环的带宽不满足近似条件,或对电流环实际带宽有严格的要求,则可以引入前馈控制来补偿反电动势带来的扰动,我们在计算控制器参数的时候同样可以忽略反电动势。
反馈通路上的一阶低通滤波器在抑制噪声的同时,也会带来延时,为了平衡这个延时作用,在输入信号通道上加入一个时间常数相同的惯性环节,称作配合滤波环节,从而使滤波器可以从反馈通路移动到前向通道中,带来设计上的方便,如下图所示:
延时环节
e
−
T
d
s
e^{-T_ds}
e−Tds 和
e
−
T
p
s
e^{-T_ps}
e−Tps 不利于设计与分析,故使用泰勒展开将其近似为一个一阶惯性环节:
e − T d s = 1 e T d s ≈ 1 1 + T d s e^{-T_ds}=\frac{1}{e^{T_ds}}\approx \frac{1}{1+T_ds} e−Tds=eTds1≈1+Tds1
方框图可以简化如下:
可以看出,传递函数中有多个高频段的小惯性环节,系统的阶次很高,故首先要进行降阶处理。完整的证明见第三节,下面只给出结论。
G
(
s
)
=
1
(
1
+
T
d
s
)
(
1
+
T
p
s
)
(
1
+
T
f
s
)
G\left( s \right) =\frac{1}{\left( 1+T_ds \right) \left( 1+T_ps \right) \left( 1+T_fs \right)}
G(s)=(1+Tds)(1+Tps)(1+Tfs)1
w
b
w_b
wb 为电流环的带宽,当其满足如下条件时:
w
b
≤
1
3
1
T
d
T
f
+
T
d
T
p
+
T
f
T
p
w_b \le \frac{1}{3}\sqrt{\frac{1}{T_dT_f+T_dT_p+T_fT_p}}
wb≤31TdTf+TdTp+TfTp1
G
(
s
)
G(s)
G(s) 可以近似为:
G
(
s
)
≈
1
1
+
(
T
d
+
T
p
+
T
f
)
s
=
1
1
+
T
s
G\left( s \right) \approx \frac{1}{1+\left( T_d+T_p+T_f \right) s} = \frac{1}{1+Ts}
G(s)≈1+(Td+Tp+Tf)s1=1+Ts1
故方框图可以简化为:
其中,总延时
T
=
T
d
+
T
p
+
T
f
=
T
f
+
3
/
2
∗
T
d
T=T_d+T_p+T_f = T_f+3/2*T_d
T=Td+Tp+Tf=Tf+3/2∗Td,系统的开环传递函数如下:
G
o
p
e
n
c
r
t
(
s
)
=
Y
(
s
)
R
(
s
)
=
K
p
c
r
t
(
K
i
c
r
t
+
s
)
s
∗
1
1
+
T
s
∗
1
R
+
L
s
G_{open}^{crt}\left( s \right) =\frac{Y\left( s \right)}{R\left( s \right)}=\frac{K_{p}^{crt}(K_{i}^{crt}+s)}{s}*\frac{1}{1+Ts}*\frac{1}{R+Ls}
Gopencrt(s)=R(s)Y(s)=sKpcrt(Kicrt+s)∗1+Ts1∗R+Ls1
配置
K
i
K_i
Ki,使得零极点对消:
K
i
c
r
t
=
R
L
G
o
p
e
n
c
r
t
(
s
)
=
K
p
c
r
t
s
∗
1
1
+
T
s
∗
1
L
K_{i}^{crt}=\frac{R}{L} \\ G_{open}^{crt}\left( s \right) =\frac{K_{p}^{crt}}{s}*\frac{1}{1+Ts}*\frac{1}{L}
Kicrt=LRGopencrt(s)=sKpcrt∗1+Ts1∗L1
计算闭环传递函数:
G
c
l
o
s
e
c
r
t
(
s
)
=
G
o
p
e
n
c
r
t
(
s
)
1
+
G
o
p
e
n
c
r
t
(
s
)
=
K
p
c
r
t
L
T
s
2
+
L
s
+
K
p
c
r
t
=
K
p
c
r
t
L
T
s
2
+
1
T
s
+
K
p
c
r
t
L
T
G_{close}^{crt}\left( s \right) =\frac{G_{open}^{crt}\left( s \right)}{1+G_{open}^{crt}\left( s \right)}=\frac{K_{p}^{crt}}{LTs^2+Ls+K_{p}^{crt}}\,\,=\,\,\frac{\frac{K_{p}^{crt}}{LT}}{s^2+\frac{1}{T}s+\frac{K_{p}^{crt}}{LT}}
Gclosecrt(s)=1+Gopencrt(s)Gopencrt(s)=LTs2+Ls+KpcrtKpcrt=s2+T1s+LTKpcrtLTKpcrt
可以看出,系统是一个二阶震荡系统,该系统的无阻尼振荡频率和阻尼比如下:
w
n
=
K
p
c
r
t
L
T
,
ξ
=
1
2
L
T
∗
K
p
c
r
t
w_n=\sqrt{\frac{K_{p}^{crt}}{LT}}, \,\, \xi=\frac{1}{2}\sqrt{\frac{L}{T*K_{p}^{crt}}}
wn=LTKpcrt,ξ=21T∗KpcrtL
选取最佳工程阻尼比,令
ξ
=
2
/
2
\xi = \sqrt2/2
ξ=2/2,有:
T
=
L
2
K
p
c
r
t
w
n
=
K
p
c
r
t
L
T
=
2
K
p
c
r
t
L
T=\frac{L}{2K_{p}^{crt}} \\ w_n=\sqrt{\frac{K_{p}^{crt}}{LT}}=\frac{\sqrt{2}K_{p}^{crt}}{L}
T=2KpcrtLwn=LTKpcrt=L2Kpcrt
此时
w
n
w_n
wn 与闭环带宽
w
b
w_b
wb 相等,证明如下:
G
c
l
o
s
e
c
r
t
(
s
)
=
w
n
2
s
2
+
2
w
n
s
+
w
n
2
∣
G
c
l
o
s
e
c
r
t
(
j
w
n
)
∣
=
∣
w
n
2
−
w
n
2
+
2
w
n
2
j
+
w
n
2
∣
=
2
2
=
∣
G
c
l
o
s
e
c
r
t
(
j
w
b
)
∣
w
n
=
w
b
G_{close}^{crt}\left( s \right) =\,\,\frac{{w_n}^2}{s^2+\sqrt{2}w_ns+{w_n}^2} \\ \left| G_{close}^{crt}\left( jw_n \right) \right|=\left| \frac{{w_n}^2}{-w_{n}^{2}+\sqrt{2}{w_n}^2j+{w_n}^2} \right|=\frac{\sqrt{2}}{2} = \left| G_{close}^{crt}\left( jw_b \right) \right| \\ w_n=w_b
Gclosecrt(s)=s2+2wns+wn2wn2∣
∣Gclosecrt(jwn)∣
∣=∣
∣−wn2+2wn2j+wn2wn2∣
∣=22=∣
∣Gclosecrt(jwb)∣
∣wn=wb
故有:
K
p
c
r
t
=
2
2
L
w
b
T
=
L
2
K
p
c
r
t
=
1
2
w
b
=
T
f
+
3
2
T
d
w
f
=
1
T
f
=
1
1
2
w
b
−
3
2
T
d
K_{p}^{crt}=\frac{\sqrt{2}}{2}Lw_b \\ T=\frac{L}{2K_{p}^{crt}}=\frac{1}{\sqrt{2}w_b}=T_f+\frac{3}{2}T_d \\ w_f=\frac{1}{T_f}=\frac{1}{\frac{1}{\sqrt{2}w_b}-\frac{3}{2}T_d}
Kpcrt=22LwbT=2KpcrtL=2wb1=Tf+23Tdwf=Tf1=2wb1−23Td1
现在串联 PI 控制器的参数
K
p
c
r
t
,
K
i
c
r
t
K_{p}^{crt}, K_{i}^{crt}
Kpcrt,Kicrt 以及低通滤波器的截止频率
w
f
w_f
wf 都可以用电流环带宽
w
b
w_b
wb 进行表示,在实际调试过程中,我们只需要合理设置
w
b
w_b
wb 的值即可。
因为
w
b
=
1
/
(
2
T
)
w_b = 1 / (\sqrt{2}T)
wb=1/(2T),故电流环的带宽受到系统中总延时的限制,当
T
f
T_f
Tf 等于 0,即不存在转速滤波环节时,电流环理论带宽最大。此时有:
w
b
m
a
x
=
2
3
2
T
d
w_{bmax} = \frac{2}{3\sqrt{2}T_d}
wbmax=32Td2
系统降阶时需要满足条件:
w
b
≤
1
3
1
T
d
T
p
=
1
3
2
T
d
2
=
2
3
T
d
w_b\le \frac{1}{3}\sqrt{\frac{1}{T_dT_p}}=\frac{1}{3}\sqrt{\frac{2}{{T_d}^2}}\,\,=\,\,\frac{\sqrt{2}}{3T_d}
wb≤31TdTp1=31Td22=3Td2
此时恰好满足该条件,故任意的
w
b
w_b
wb 均满足该简化条件。实际上,由于做了很多工程近似,上述证明并不严谨,只是可以说明在合理的范围内选择电流环带宽,系统都有比较好的近似效果,最后的实际带宽和理论带宽不会差距过大。
若使用并联 PI 控制器,则参数如下:
∗
K
i
c
r
t
=
2
2
R
w
b
∗
K
p
c
r
t
=
2
2
L
w
b
^*K_{i}^{crt}=\frac{\sqrt{2}}{2}Rw_b \\ ^*K_{p}^{crt}=\frac{\sqrt{2}}{2}Lw_b
∗Kicrt=22Rwb∗Kpcrt=22Lwb
二. 速度环设计
电流环的闭环传递函数为:
G
c
l
o
s
e
c
r
t
(
s
)
=
w
b
2
s
2
+
2
w
b
s
+
w
b
2
G_{close}^{crt}\left( s \right) =\,\,\frac{{w_b}^2}{s^2+\sqrt{2}w_bs+{w_b}^2}
Gclosecrt(s)=s2+2wbs+wb2wb2
在分析速度环时,首先要对电流环的闭环传递函数进行简化,推导见第三节。当
w
b
c
r
t
>
3
w
b
s
p
d
w_{b}^{crt}>3w_{b}^{spd}
wbcrt>3wbspd 时,有:
G
c
l
o
s
e
c
r
t
(
s
)
=
1
1
+
2
w
b
s
G_{close}^{crt}\left( s \right) =\frac{1}{1+\frac{\sqrt{2}}{w_b}s}
Gclosecrt(s)=1+wb2s1
K
t
K_t
Kt 为电机的转矩系数,
J
J
J 为总转动惯量,同样使用一个串联的 PI 控制器进行控制,这样系统在扰动
D
(
s
)
D(s)
D(s) 的作用点之前有一个积分环节,可以实现转速无静差,整个系统是一个二型系统。
在这里我们没有考虑粘性阻尼和速度环的滤波环节,也没有考虑数字控制器造成的延时,一方面是因为如果都考虑,会显著增加系统设计时的复杂度;另一方面是因为速度环的带宽比较小,不精确设计带来的误差较小,也可以理解为抗扰能力较强。
我们在这里把所有未建模的动态视为扰动,只要保证控制器有一定的鲁棒性和抗扰能力即可,在 TI 的手册中有对滤波环节和粘性阻尼未建模的影响进行分析。
速度环开环传递函数如下:
G
o
p
e
n
s
p
d
(
s
)
=
K
p
s
p
d
(
K
i
s
p
d
+
s
)
s
∗
G
c
l
o
s
e
c
r
t
(
s
)
∗
K
e
J
s
=
K
e
K
p
s
p
d
(
K
i
s
p
d
+
s
)
J
s
2
(
1
+
2
w
b
c
r
t
s
)
G_{open}^{spd}\left( s \right) =\frac{K_{p}^{spd}(K_{i}^{spd}+s)}{s}*G_{close}^{crt}\left( s \right) *\frac{K_e}{Js}=\frac{K_eK_{p}^{spd}(K_{i}^{spd}+s)}{Js^2\left( 1+\frac{\sqrt{2}}{w_{b}^{crt}}s \right)}
Gopenspd(s)=sKpspd(Kispd+s)∗Gclosecrt(s)∗JsKe=Js2(1+wbcrt2s)KeKpspd(Kispd+s)
这是一个典型二型系统,我们按照最大相角裕度的方式进行零极点配置,证明见第三节:
w
p
o
l
e
=
w
b
c
r
t
2
w
z
e
r
o
=
K
i
s
p
d
w
p
o
l
e
=
δ
w
c
=
δ
2
w
z
e
r
o
w_{pole}=\frac{w_{b}^{crt}}{\sqrt{2}}\,\, w_{zero}=K_{i}^{spd} \\ w_{pole}=\delta w_c=\delta ^2w_{zero}
wpole=2wbcrtwzero=Kispdwpole=δwc=δ2wzero
传递函数变为:
G
o
p
e
n
s
p
d
(
s
)
=
K
e
K
p
s
p
d
(
1
δ
w
c
+
s
)
J
s
2
(
1
+
1
δ
w
c
s
)
G_{open}^{spd}\left( s \right) =\frac{K_eK_{p}^{spd}(\frac{1}{\delta}w_c+s)}{Js^2\left( 1+\frac{1}{\delta w_c}s \right)}
Gopenspd(s)=Js2(1+δwc1s)KeKpspd(δ1wc+s)
我们在速度环中使用开环剪切频率
w
c
w_c
wc 表示
K
p
s
p
d
K_{p}^{spd}
Kpspd 和
K
i
s
p
d
K_{i}^{spd}
Kispd,根据前面的表达式,可以解出
K
i
s
p
d
K_{i}^{spd}
Kispd:
δ
=
w
p
o
l
e
w
z
e
r
o
=
w
b
c
r
t
2
K
i
s
p
d
δ
=
w
p
o
l
e
w
c
=
w
c
w
z
e
r
o
w
c
2
=
w
p
o
l
e
w
z
e
r
o
=
w
b
c
r
t
K
i
s
p
d
2
K
i
s
p
d
=
2
w
c
2
w
b
c
r
t
\delta =\sqrt{\frac{w_{pole}}{w_{zero}}}=\sqrt{\begin{array}{l} \frac{w_{b}^{crt}}{\sqrt{2}K_{i}^{spd}}\\ \end{array}} \\ \delta =\frac{w_{pole}}{w_c}=\frac{w_c}{w_{zero}} \\ w_{c}^{2}=w_{pole}w_{zero}=\frac{w_{b}^{crt}K_{i}^{spd}}{\sqrt{2}} \\ K_{i}^{spd}=\frac{\sqrt{2}{w_c}^2}{w_{b}^{crt}}
δ=wzerowpole=2Kispdwbcrtδ=wcwpole=wzerowcwc2=wpolewzero=2wbcrtKispdKispd=wbcrt2wc2
根据剪切频率的定义,有:
∣
G
o
p
e
n
s
p
d
(
j
w
c
)
∣
=
∣
K
e
K
p
s
p
d
(
1
δ
w
c
+
j
w
c
)
−
J
w
c
2
(
1
+
1
δ
w
c
w
c
j
)
∣
=
1
\left| G_{open}^{spd}\left( jw_c \right) \right|=\left| \frac{K_eK_{p}^{spd}(\frac{1}{\delta}w_c+jw_c)}{-{Jw_c}^2\left( 1+\frac{1}{\delta w_c}w_cj \right)} \right|=1
∣
∣Gopenspd(jwc)∣
∣=∣
∣−Jwc2(1+δwc1wcj)KeKpspd(δ1wc+jwc)∣
∣=1
可以解得:
K
p
s
p
d
=
J
w
c
K
e
K_{p}^{spd}=\frac{Jw_c}{K_e}
Kpspd=KeJwc
故我们可以将速度环 PI 控制器的参数
K
p
s
p
d
,
K
i
s
p
d
K_{p}^{spd}, K_{i}^{spd}
Kpspd,Kispd 用速度环开环剪切频率
w
c
w_c
wc 表示,与电流环相同,我们只需要根据实际情况调节
w
c
w_c
wc 即可。
对电流环闭环传递函数降阶的时候,需要满足
w
b
c
r
t
>
3
w
b
s
p
d
w_{b}^{crt}>3w_{b}^{spd}
wbcrt>3wbspd 的条件,一般有
w
c
≤
w
b
≤
2
w
c
w_c \le w_b \le 2w_c
wc≤wb≤2wc,故在调节
w
c
w_c
wc 时,需要满足
w
c
<
6
w
b
c
r
t
w_c < 6w_{b}^{crt}
wc<6wbcrt。
若使用并联 PI 控制器,则参数如下:
∗
K
i
s
p
d
=
2
J
w
c
3
K
e
w
b
c
r
t
∗
K
p
s
p
d
=
J
w
c
K
e
^*K_{i}^{spd}=\frac{\sqrt{2}J{w_c}^3}{K_ew_{b}^{crt}} \\ ^*K_{p}^{spd}=\frac{Jw_c}{K_e}
∗Kispd=Kewbcrt2Jwc3∗Kpspd=KeJwc
三. 公式补充推导
1. 电流环忽略反电动势的条件
首先我们先推导一下电磁时间常数
T
e
T_e
Te 和机电时间常数
T
m
T_m
Tm 的表达式。
R
(
s
)
R(s)
R(s) 为输入电压,
Y
(
s
)
Y(s)
Y(s) 为电机的输出转速。电机绕组的传递函数为一个一阶惯性环节,电磁时间常数
T
e
T_e
Te 为该惯性环节的时间常数,即给定电压,电流经过一个
T
e
T_e
Te 时间后,会达到最终电流的 63.2%。重写绕组的传递函数为:
G
(
s
)
=
1
R
+
L
s
=
1
/
R
1
+
T
e
s
G\left( s \right) =\frac{1}{R+Ls}=\frac{1/R}{1+T_es}
G(s)=R+Ls1=1+Tes1/R
忽略干扰
D
(
s
)
D(s)
D(s),考虑反电动势的影响,系统的闭环传递函数为:
G
(
s
)
=
R
(
s
)
Y
(
s
)
=
1
/
R
1
+
T
e
s
K
t
J
s
1
+
1
/
R
1
+
T
e
s
K
t
K
e
J
s
=
1
/
K
e
T
e
J
R
K
e
K
t
s
2
+
J
R
K
e
K
t
s
+
1
G\left( s \right) =\frac{R\left( s \right)}{Y\left( s \right)}=\frac{\frac{1/R}{1+T_es}\frac{K_t}{Js}}{1+\frac{1/R}{1+T_es}\frac{K_tK_e}{Js}}=\frac{1/K_e}{\frac{T_eJR}{K_eK_t}s^2+\frac{JR}{K_eK_t}s+1}
G(s)=Y(s)R(s)=1+1+Tes1/RJsKtKe1+Tes1/RJsKt=KeKtTeJRs2+KeKtJRs+11/Ke
令机电常数
T
m
T_m
Tm 为:
T
m
=
J
R
K
e
K
t
T_m=\frac{JR}{K_eK_t}
Tm=KeKtJR
则有:
G
(
s
)
=
1
/
K
e
T
e
T
m
s
2
+
T
m
s
+
1
G\left( s \right) =\frac{1/K_e}{T_eT_ms^2+T_ms+1}
G(s)=TeTms2+Tms+11/Ke
一般情况下有
T
m
>
10
T
e
T_m > 10T_e
Tm>10Te,故认为
T
m
+
T
e
≈
T
m
T_m+T_e\approx T_m
Tm+Te≈Tm,所以有:
G
(
s
)
=
1
/
K
e
(
T
m
s
+
1
)
(
T
e
s
+
1
)
G\left( s \right) =\frac{1/K_e}{\left( T_ms+1 \right) \left( T_es+1 \right)}
G(s)=(Tms+1)(Tes+1)1/Ke
1
/
T
e
1/T_e
1/Te 一般远远超过控制系统的通频带,即
w
b
≪
1
/
T
e
w_b \ll 1/T_e
wb≪1/Te,故可以再次进行近似(这里也可以利用下面高阶系统降阶的方法分析一下近似条件):
G
(
s
)
=
1
/
K
e
T
m
+
1
G\left( s \right) =\frac{1/K_e}{T_m+1}
G(s)=Tm+11/Ke
电机电压和转速之间的传递函数可以近似为一个一节惯性环节,
T
m
T_m
Tm 是该惯性环节的时间常数,它表示给定一个电压,电机加速到对应转速所需要的时间。
下面我们用 T m T_m Tm 和 T e T_e Te 重新画一下系统的方框图:

R
(
s
)
R(s)
R(s) 为电机的输入电压,
Y
(
s
)
Y(s)
Y(s) 为流过电机绕组的电流。若不考虑反电动势的影响,则其传递函数为:
G
0
(
s
)
=
Y
(
s
)
R
(
s
)
=
1
L
s
+
R
=
1
/
R
1
+
T
e
s
G_0\left( s \right) =\frac{Y\left( s \right)}{R\left( s \right)}=\frac{1}{Ls+R}=\frac{1/R}{1+T_es}
G0(s)=R(s)Y(s)=Ls+R1=1+Tes1/R
考虑反电动势的影响,则传递函数为:
G
(
s
)
=
G
0
(
s
)
1
+
G
0
(
s
)
H
(
s
)
=
1
/
R
T
e
s
+
1
+
1
T
m
s
G
(
j
w
)
=
1
/
R
T
e
w
j
−
1
T
m
w
j
+
1
G\left( s \right) =\frac{G_0\left( s \right)}{1+G_0\left( s \right) H\left( s \right)}=\frac{1/R}{T_es+1+\frac{1}{T_ms}} \\ G\left( jw \right) =\frac{1/R}{T_ewj-\frac{1}{T_mw}j+1}
G(s)=1+G0(s)H(s)G0(s)=Tes+1+Tms11/RG(jw)=Tewj−Tmw1j+11/R
当
T
e
w
≫
1
/
T
m
w
T_ew \gg 1/T_mw
Tew≫1/Tmw 时,可以忽略小量
1
/
T
m
w
1/T_mw
1/Tmw,工程上一般允许 10% 的误差,故只需满足:
1
10
T
e
w
≥
1
T
m
w
w
2
≥
10
T
e
T
m
w
≥
3
1
T
e
T
m
\frac{1}{10}T_ew \ge \frac{1}{T_mw} \\ w^2 \ge \frac{10}{T_eT_m} \\ w \ge 3\sqrt{\frac{1}{T_eT_m}}
101Tew≥Tmw1w2≥TeTm10w≥3TeTm1
G
(
s
)
G(s)
G(s) 就可以被简化为:
G
(
s
)
=
1
/
R
1
+
T
e
s
=
G
0
(
s
)
G\left( s \right) = \frac{1/R}{1+T_es}=G_0(s)
G(s)=1+Tes1/R=G0(s)
可以看到,
G
(
s
)
G(s)
G(s) 被简化成了没有反电动势影响时的传递函数
G
0
(
s
)
G_0(s)
G0(s),即此时可以忽略反电动势的影响。
2. 电流环小惯性环节的降阶
G ( s ) = 1 ( 1 + T d s ) ( 1 + T p s ) ( 1 + T f s ) G ( j w ) = 1 ( 1 + T d j w ) ( 1 + T p j w ) ( 1 + T f j w ) = 1 ( 1 − ( T d T f + T d T p + T f T p ) w 2 ) + ( ( T d + T f + T p ) w − T d T p T f w 3 ) j G\left( s \right) =\frac{1}{\left( 1+T_ds \right) \left( 1+T_ps \right) \left( 1+T_fs \right)} \\ G\left( jw \right) =\frac{1}{\left( 1+T_djw \right) \left( 1+T_pjw \right) \left( 1+T_fjw \right)}=\frac{1}{\left( 1-\left( T_dT_f+T_dT_p+T_fT_p \right) w^2 \right) +\left( \left( T_d+T_f+T_p \right) w-T_dT_pT_fw^3 \right) j} G(s)=(1+Tds)(1+Tps)(1+Tfs)1G(jw)=(1+Tdjw)(1+Tpjw)(1+Tfjw)1=(1−(TdTf+TdTp+TfTp)w2)+((Td+Tf+Tp)w−TdTpTfw3)j1
w
b
w_b
wb 为电流环的带宽,当满足如下条件时,可以忽略小项
(
T
d
T
f
+
T
d
T
p
+
T
f
T
p
)
w
2
\left( T_dT_f+T_dT_p+T_fT_p \right)w^2
(TdTf+TdTp+TfTp)w2 和
T
d
T
p
T
f
w
3
T_dT_pT_fw^3
TdTpTfw3。
(
T
d
T
f
+
T
d
T
p
+
T
f
T
p
)
w
b
2
≪
1
T
d
T
p
T
f
w
b
3
≪
(
T
d
+
T
f
+
T
p
)
w
b
\left( T_dT_f+T_dT_p+T_fT_p \right) w_b^2\ll 1 \\ T_dT_pT_fw_b^3\ll \left( T_d+T_f+T_p \right) w_b
(TdTf+TdTp+TfTp)wb2≪1TdTpTfwb3≪(Td+Tf+Tp)wb
进行不等式化简:
w
b
2
≪
1
T
d
T
f
+
T
d
T
p
+
T
f
T
p
w
b
2
≪
T
d
+
T
f
+
T
p
T
d
T
p
T
f
=
1
T
p
T
f
+
1
T
d
T
f
+
1
T
d
T
p
w_b^2\ll \frac{1}{T_dT_f+T_dT_p+T_fT_p} \\ w_b^2\ll \frac{T_d+T_f+T_p}{T_dT_pT_f}=\frac{1}{T_pT_f}+\frac{1}{T_dT_f}+\frac{1}{T_dT_p}
wb2≪TdTf+TdTp+TfTp1wb2≪TdTpTfTd+Tf+Tp=TpTf1+TdTf1+TdTp1
当
T
d
,
T
p
,
T
f
>
0
T_d,T_p,T_f>0
Td,Tp,Tf>0 时,有:
1
T
d
T
f
+
T
d
T
p
+
T
f
T
p
<
1
T
p
T
f
+
1
T
d
T
f
+
1
T
d
T
p
\frac{1}{T_dT_f+T_dT_p+T_fT_p}\,\,<\frac{1}{T_pT_f}+\frac{1}{T_dT_f}+\frac{1}{T_dT_p}
TdTf+TdTp+TfTp1<TpTf1+TdTf1+TdTp1
故只需满足:
w
b
2
≪
1
T
d
T
f
+
T
d
T
p
+
T
f
T
p
w_b^2\ll \frac{1}{T_dT_f+T_dT_p+T_fT_p}
wb2≪TdTf+TdTp+TfTp1
工程上可以允许 10% 的误差,所以只要:
w
b
2
≤
1
10
(
T
d
T
f
+
T
d
T
p
+
T
f
T
p
)
w
b
≤
1
10
(
T
d
T
f
+
T
d
T
p
+
T
f
T
p
)
≈
1
3
1
T
d
T
f
+
T
d
T
p
+
T
f
T
p
w_b^2 \le \frac{1}{10(T_dT_f+T_dT_p+T_fT_p)} \\ w_b \le \sqrt{\frac{1}{10(T_dT_f+T_dT_p+T_fT_p)}} \approx \frac{1}{3}\sqrt{\frac{1}{T_dT_f+T_dT_p+T_fT_p}}
wb2≤10(TdTf+TdTp+TfTp)1wb≤10(TdTf+TdTp+TfTp)1≈31TdTf+TdTp+TfTp1
就有:
G
(
s
)
=
1
(
1
+
T
d
s
)
(
1
+
T
p
s
)
(
1
+
T
f
s
)
≈
1
1
+
(
T
d
+
T
p
+
T
f
)
s
=
1
1
+
T
s
G\left( s \right) =\frac{1}{\left( 1+T_ds \right) \left( 1+T_ps \right) \left( 1+T_fs \right)} \approx \frac{1}{1+\left( T_d+T_p+T_f \right) s} = \frac{1}{1+Ts}
G(s)=(1+Tds)(1+Tps)(1+Tfs)1≈1+(Td+Tp+Tf)s1=1+Ts1
3. 电流环闭环传递函数的降阶
G c l o s e c r t ( s ) = w b 2 s 2 + 2 w b s + w b 2 = 1 1 w b 2 s 2 + 2 w b s + 1 G c l o s e c r t ( j w ) = 1 1 − ( w w b ) 2 + 2 w b w j G_{close}^{crt}\left( s \right) =\,\,\frac{{w_b}^2}{s^2+\sqrt{2}w_bs+{w_b}^2}=\frac{1}{\frac{1}{{w_b}^2}s^2+\frac{\sqrt{2}}{w_b}s+1} \\ G_{close}^{crt}\left( jw \right) =\,\,\frac{1}{1-\left( \frac{w}{w_b} \right) ^2+\frac{\sqrt{2}}{w_b}wj} Gclosecrt(s)=s2+2wbs+wb2wb2=wb21s2+wb2s+11Gclosecrt(jw)=1−(wbw)2+wb2wj1
当
(
w
/
w
b
)
2
≪
1
(w/w_b)^2 \ll 1
(w/wb)2≪1 时,可以忽略小项
(
w
/
w
b
)
2
(w/w_b)^2
(w/wb)2,工程上允许 10% 的误差,即:
(
w
b
s
p
d
w
b
c
r
t
)
2
≤
1
10
w
b
s
p
d
≤
1
3
w
b
c
r
t
\left( \frac{w_{b}^{spd}}{w_{b}^{crt}} \right) ^2 \le \frac{1}{10} \\ w_{b}^{spd} \le \frac{1}{3}w_{b}^{crt}
(wbcrtwbspd)2≤101wbspd≤31wbcrt
4. 最大相角裕度的证明
假设一个二型系统传递函数如下:
G
(
s
)
=
s
+
w
z
s
2
(
s
+
w
p
)
G\left( s \right) =\frac{s+w_z}{s^2\left( s+w_p \right)}
G(s)=s2(s+wp)s+wz
其中,
w
z
w_z
wz 为零点的转折频率,
w
p
w_p
wp 为极点的转折频率。
相角裕度
γ
\gamma
γ 表达式如下:
γ
=
a
r
c
tan
w
c
w
z
−
a
r
c
tan
w
c
w
p
−
180
°
\gamma = \mathrm{arc}\tan \frac{w_c}{w_z}-\mathrm{arc}\tan \frac{w_c}{w_p}-180\degree
γ=arctanwzwc−arctanwpwc−180°
要算出
w
c
w_c
wc 为何值时系统拥有最大的相角裕度,我们可以用高中时分析函数单调性、求极值的方法来求解。
γ
˙
=
w
z
w
z
2
+
w
c
2
−
w
p
w
p
2
+
w
c
2
γ
˙
=
w
z
w
p
2
+
w
z
w
c
2
−
w
p
w
z
2
−
w
p
w
c
2
(
w
z
2
+
w
c
2
)
(
w
p
2
+
w
c
2
)
γ
˙
=
w
z
w
p
2
+
w
z
w
c
2
−
w
p
w
z
2
−
w
p
w
c
2
=
0
w
c
=
w
p
w
z
\dot{\gamma} = \frac{w_z}{{w_z}^2+{w_c}^2}-\frac{w_p}{{w_p}^2+{w_c}^2} \\ \dot{\gamma} = \frac{w_z{w_p}^2+w_z{w_c}^2-w_p{w_z}^2-w_p{w_c}^2}{\left( {w_z}^2+{w_c}^2 \right) \left( {w_p}^2+{w_c}^2 \right)} \\ \dot{\gamma} = w_z{w_p}^2+w_z{w_c}^2-w_p{w_z}^2-w_p{w_c}^2=0 \\ w_c=\sqrt{w_pw_z}
γ˙=wz2+wc2wz−wp2+wc2wpγ˙=(wz2+wc2)(wp2+wc2)wzwp2+wzwc2−wpwz2−wpwc2γ˙=wzwp2+wzwc2−wpwz2−wpwc2=0wc=wpwz
可以看到,当
w
c
=
w
p
w
z
w_c=\sqrt{w_pw_z}
wc=wpwz 时,相角裕度的导数为 0,再简单分析单调性可知,当
w
c
=
w
p
w
z
w_c=\sqrt{w_pw_z}
wc=wpwz 时,取得最大相角裕度。