【强化学习】深度强化学习:DQN(深度Q学习)、经验回放、固定Q目标迭代流程。

以下是深度强化学习:深度Q网络DQN的迭代流程、其中增加了经验回放、固定Q目标等处理技巧。

流程的关键点是:

1、该流程是一个横向展开流程,从左向右是时间轴上的逐步迭代。

2、流程中动作值函数的逼近方法使用的是神经网络模型(图中含NET的步骤,具体根据需要设计)。

3、除初始化环节,每个迭代循环分为两大步操作,以随机缓存区为分界,上部为采样环节(sample,提供新的数据),下部为学习环节(learn:选取小批量数据进行学习,优化网络参数)

4、该算法是离线策略(off-line),即使用了两个策略(策略pi,策略max)分别完成探索和学习。

5、该算法使用了经验回放技巧,即将数据加载到随机缓存区(随机避免了时序关联的影响),并通过抽取小批量进行训练,使得历史数据得到有效利用。

6、该算法使用了固定Q目标的技巧,即采用了两个网络W、W-,在学习时通过网络W-来估算真值,通过网络W来进行优化,当满足一定条件后用网络W来更新网络W-,这样使得目标(真值)和预测值做了分离,有效减少振荡。

7、小批量采样后有多组样本,图中仅用s,a,r,s1做了简单代替,实际后续操作中是一个二维数组,实现中需要注意。

8、训练NET的本质是:通过梯度下降等方法调整系统参数W (更新网络W步骤),使得网络模型逼近真实动作值函数。

9、图中的策略pi虽未改变,但是受网络调整的影响,再次使用时与上次使用的条件会发生差异,因此会间接发生改变。

10、迭代的结束标志此处未给出,一般是系统提示结束(到达了目标、或者边界),或者是达到了指定的迭代次数主动退出,取决于具体实现。
 

 

  • 2
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 以下是一个简单的深度Q网络强化学习代码示例,使用PyTorch和OpenAI Gym库: ```python import gym import torch import random import numpy as np from collections import deque # 创建Deep Q Network模型 class DQN(torch.nn.Module): def __init__(self, state_size, action_size): super(DQN, self).__init__() self.fc1 = torch.nn.Linear(state_size, 24) self.fc2 = torch.nn.Linear(24, 24) self.fc3 = torch.nn.Linear(24, action_size) def forward(self, x): x = torch.nn.functional.relu(self.fc1(x)) x = torch.nn.functional.relu(self.fc2(x)) x = self.fc3(x) return x # 创建一个Experience Replay缓冲区 class ReplayBuffer: def __init__(self, capacity): self.buffer = deque(maxlen=capacity) def push(self, state, action, reward, next_state, done): self.buffer.append((state, action, reward, next_state, done)) def sample(self, batch_size): state, action, reward, next_state, done = zip(*random.sample(self.buffer, batch_size)) return np.array(state), np.array(action), np.array(reward), np.array(next_state), np.array(done) def __len__(self): return len(self.buffer) # 创建Agent类 class DQNAgent: def __init__(self, state_size, action_size, buffer_capacity, batch_size, gamma, epsilon, epsilon_decay, lr): self.state_size = state_size self.action_size = action_size self.memory = ReplayBuffer(buffer_capacity) self.batch_size = batch_size self.gamma = gamma self.epsilon = epsilon self.epsilon_decay = epsilon_decay self.lr = lr self.model = DQN(state_size, action_size) self.optimizer = torch.optim.Adam(self.model.parameters(), lr=lr) self.loss_fn = torch.nn.MSELoss() def act(self, state): if random.random() < self.epsilon: return random.randrange(self.action_size) state = torch.tensor(state, dtype=torch.float32).unsqueeze(0) with torch.no_grad(): q_values = self.model(state) return np.argmax(q_values.cpu().data.numpy()) def train(self): if len(self.memory) < self.batch_size: return state, action, reward, next_state, done = self.memory.sample(self.batch_size) state = torch.tensor(state, dtype=torch.float32) action = torch.tensor(action, dtype=torch.long).unsqueeze(1) reward = torch.tensor(reward, dtype=torch.float32).unsqueeze(1) next_state = torch.tensor(next_state, dtype=torch.float32) done = torch.tensor(done, dtype=torch.float32).unsqueeze(1) q_values = self.model(state).gather(1, action) next_q_values = self.model(next_state).max(1)[0].unsqueeze(1) target = reward + self.gamma * next_q_values * (1 - done) loss = self.loss_fn(q_values, target.detach()) self.optimizer.zero_grad() loss.backward() self.optimizer.step() self.epsilon *= self.epsilon_decay # 定义超参数 state_size = 4 action_size = 2 buffer_capacity = 10000 batch_size = 64 gamma = 0.99 epsilon = 1.0 epsilon_decay = 0.995 lr = 0.001 # 创建环境和Agent env = gym.make('CartPole-v0') agent = DQNAgent(state_size, action_size, buffer_capacity, batch_size, gamma, epsilon, epsilon_decay, lr) # 训练 for episode in range(500): state = env.reset() score = 0 while True: action = agent.act(state) next_state, reward, done, _ = env.step(action) agent.memory.push(state, action, reward, next_state, done) state = next_state score += reward agent.train() if done: break print('Episode: {}, Score: {:.2f}'.format(episode, score)) # 测试 for episode in range(10): state = env.reset() score = 0 while True: action = agent.act(state) next_state, reward, done, _ = env.step(action) state = next_state score += reward if done: break print('Episode: {}, Score: {:.2f}'.format(episode, score)) env.close() ``` 该代码使用CartPole-v0环境进行训练和测试。在训练过程中,Agent将其经验存储在Replay Buffer中,并使用随机抽样的方式从中取出一批数据进行训练。在每个训练步骤中,Agent将状态输入DQN网络,得到预测的Q值,计算损失并更新网络参数。在测试过程中,Agent根据学习到的策略在环境中执行动作,并计算总得分。 ### 回答2: 深度Q网络是一种通过神经网络来实现强化学习的方法。它使用了一个称为Q网络的神经网络来近似值函数Q(s,a),其中s是状态,a是动作。深度Q网络的目标是让Q网络所预测的值函数与真实值函数之间的差距最小化。 以下是深度Q网络的代码实现的主要步骤: 1. 导入所需的库和模块:通常是导入numpy、torch等库。 2. 定义Q网络的结构:通过定义一个神经网络的类来完成,可以使用全连接层、卷积层等。 3. 定义经验回放缓冲区(experience replay buffer):这是用于储存智能体在环境中的经验的数据结构,通常使用一个列表来实现。 4. 初始化Q网络和目标Q网络:使用定义好的Q网络结构来初始化两个网络,一个用于训练,一个用于固定目标。 5. 定义优化器和损失函数:选择一个适合的优化器,如Adam,并定义损失函数,通常是均方误差损失。 6. 定义训练函数:通过采样经验回放缓冲区中的一批样本来训练Q网络。对于每个样本,计算当前Q网络的预测值,并使用目标Q网络计算目标值。然后使用优化器来更新Q网络的参数,使得预测值逐渐接近目标值。 7. 定义选择动作函数:根据当前状态使用Q网络来选择动作,通常使用贪心策略或者ε-greedy策略。 8. 定义主循环:在每个时间步中,获取当前状态,选择动作,执行动作,观察环境反馈,将经验存储到经验回放缓冲区中,然后调用训练函数进行网络训练。 9. 最后运行主循环来训练深度Q网络,并观察它在环境中的表现和学习效果。 以上是深度Q网络强化学习代码的一般流程,具体实现可以根据任务的不同进行调整。需要注意的是,深度Q网络可能有一些常见的问题,如过拟合、不稳定等,需要采用一些技巧来解决。 ### 回答3: 深度 Q 学习是一种强化学习算法,用于训练智能体在环境中做出最优决策。其核心思想是使用深度神经网络来近似 Q 函数的值,并通过不断代优化网络参数来使得智能体的决策更加精确。 深度 Q 网络的代码实现通常包括以下几个关键步骤: 1. 数据预处理:将环境状态转换为神经网络的输入形式,例如将连续值转化为离散值或进行归一化操作。 2. 搭建网络模型:使用深度神经网络搭建 Q 网络模型,通常采用卷积神经网络或全连接神经网络。 3. 选择动作:根据当前环境状态和 Q 网络模型,选择一个最优的动作。可以使用 epsilon-greedy 策略平衡探索和利用,即以 epsilon 的概率选择一个随机动作,以 1-epsilon 的概率选择一个使得 Q 值最大的动作。 4. 与环境交互:执行选择的动作,并观测环境的反馈(奖励和下一个状态)。 5. 计算 Q 目标:根据下一个状态和 Q 网络模型,计算出 Q 目标值。如果达到终止状态,则 Q 目标值为奖励值;否则,Q 目标值为奖励值加上折扣因子乘以下一个状态的最大 Q 值。 6. 计算 Q 值:根据当前状态和 Q 网络模型,计算出当前状态下各个动作的 Q 值。 7. 更新网络参数:使用 Q 目标值和当前状态下的 Q 值计算损失函数,并通过反向传播算法更新神经网络的参数。 8. 重复进行步骤 3 至 7,直到达到预设条件(例如达到最大训练次数或 Q 值收敛)。 以上是深度 Q 学习算法的主要步骤,实际的代码实现还需要结合具体的问题和环境进行调整和优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值