百度最近举办了一场以「应用来了」为主题的市场活动。其创始人李彦宏演讲提到,利用RAG,即检索增强生成,基本消除了大模型的幻觉。AI应用将在智能体和产业应用两个方向演进,智能体是AI应用的主流形态,即将迎来快速爆发。
企业的市场活动,多少有营销意味,大模型应用是否如百度所预测的演进,需要我们拭目以待。不过,百度对于大模型的真正价值在于应用,尤其面向产业的观点,笔者倒是很认同。经常听到行业大模型,或者垂类大模型,就是面向政府和企业的大模型应用系统。
本篇文章,将围绕大模型应用,从应用形式,模型适配方式,应用开发和部署架构,对大模型应用的相关知识的系统梳理。
大模型应用形式
聊天机器人(Chatbot)
这是最常见的大模型应用形式,尤其是面向互联网用户,以聊天对话形式和大模型交互。智能客服场景主要采用的应用形式。
AI助手(AI Assistant)
AI助手,以一种辅助方式和用户协作。最为知名的是微软的各种Copilot。腾讯文档,主要功能是在线文档编辑能力,AI文档助手,可帮助我们续写当前文档,也可以根据当前的文档,生成ppt等等。
智能体(Agent)
智能体是指具备感知、思考、记忆、自主学习和决策能力的人工智能系统。Agent能够通过感知环境,自主进行所处情景、既定目标的推理预测,继而规划行动,最终自动执行工作任务。这是大模型应用领域最热的领域,有单个Agent和多个Agent的形式。自动驾驶汽车可以认为是一种智能体。具身智能也归类到智能体。24年初,AI教母李飞飞参与的一篇论文,讨论的就是Agent AI。
有两点需要说明一下。第一,这里所谓应用形式,更多是从用户的角度来看,不是开发者的设计模式。第二,应用形式与应用场景Use-Case相区别,举两个例子。
代码生成,是一个应用场景,其应用形式可以归类到AI助手。比如,Cursor的主界面和VS code类似,程序员可以在上下文或者右侧的Chat,利用大模型生成代码,修复bug,提高编程效率。另外一个AI编程工具,Github Copilot,应用名字包含着Copilot这个单词。
AI搜索引擎。美国的Perplexity ,国内的秘塔AI搜索。OpenAI刚刚发布了Chatgpt Search,向Google发起挑战。这种应用形式,和聊天机器人的形式类似,只是查询的目的和输出的结果,不会如Chatbot那么多轮。
模型适配方式
如何让通用大模型和企业的专有知识发生联系,生成的内容与企业相关,减少幻觉,这是大模型走向B端要解决的难题,也是学术界和产业界一直持续探索并尝试各种方式来解决。
提示工程(Prompt Engineering)
提示工程,实质是怎么能更好的向大模型提问,使得模型的回答更准确。研究者关注提示词对模型输出的影响,例如给大模型一个角色,鼓励他,给他个示例等,CoT(Chain of Thought),一步一步思考,更进一步,ToT(Tree of Thought),以决策树的方式思考。
给大模型做示范,根据投喂给大模型例子的多少,形成了几个概念。零样本学习(Zero-Shot Learning),这是不给大模型示例,直接下指令。单样本学习(One-Shot Learning),提供一个示例。少量样本学习(Few-Shot Learning),提供几个样本。显然,示例多几个,模型回答会更好,也会按照给定例子的格式来响应。
不过直觉上,我们期望大模型就应该尽最大努力去思考和回应,缺省就设置成一步一步去思考,拆解用户的问题。OpenAI最新发布的o1模型,就带了CoT的能力。我们习惯于直接给大模型下指令,简单粗暴,不过有时候给他示例,可以得到更好的结果。
检索增强生成(RAG)
本文开头提到RAG就是对大模型增强的一种方式,主要目的就是消除大模型幻觉,以相对经济的方式,让模型和企业知识相关联。RAG是企业大模型落地的主要形式。
在大模型应用开发阶段,企业准备和相关的数据,经过嵌入模型(如OpenAI的text-embedding-3-large)处理后,导入向量数据库中。应用部署上线后,用户输入查询,检索向量数据库,返回相关的上下文信息,和原始的查询一起构造新提示词,再送给大模型,返回和企业相关的结果。
RAG架构图
RAG是学术界的热门,有很多论文发表。卡内基梅隆大学最近有一篇综述,介绍了15个典型的RAG框架,可以一览全貌。有兴趣的读者,可以在文末找到链接。
模型训练完之后,知识就不再更新,这是模型自身机制所决定的,除非二次增量训练模型。考虑成本问题,鲜有企业会这么做。但是,企业可以更新向量数据库,这个成本和难度,远小于前者。即便如此,有些随时间变化的信息,比如今天的天气情况,或者企业外部的信息,大模型还是无能为力。需要其他工具来赋能,例如通过Web工具,访问互联网来获取外部信息,或者及时的信息。这相当于模型的外挂,也是一种检索增强形式,一般称之为工具/插件集成。
微调(Fine-Tunning)
有针对性的训练模型,学习相关知识,从RAG的外挂,转变为微调的内化。此外,有些合规的要求,比如价值观对齐的内容,也可以通过微调让大模型掌握。微调说的是小规模的调整模型的参数,需要少量的数据或者问答对(可以认为是标准答案),对模型的调整比较轻微。想要深入了解微调的分类和方法,可以参考文末链接。
增量预训练
在基础模型或者微调过模型基础上,二次增量训练,学习行业知识,是打造行业大模型的常用方式。行业大模型,具备专业领域的问答和生成能力。
提示词功能和RAG,都是从提示词上做文章,没有对模型进行优化。微调和增量预训练,这对企业的算力和人才提出很高要求,最基本的,让模型运行起来需要GPU集群。
从难度和成本角度看,提示工程、RAG、微调、增量预训练,是依次升高的,从消除幻觉和更懂企业来看,也是依次提高的。这就需要企业在成本和效果上做权衡,假如RAG足够好,就不用花很高成本做微调了呢?这是个问题。
大模型应用开发流程
大模型应用开发和传统应用开发,并没有本质区别。在流程上,可以分为设计、开发和运行三个阶段,每个环节之内,有一些细化的任务。最重要的,大模型应用最先需要考虑的是需求和目标,这是后续所有相关工作的关键。
微软LLM应用生命周期
大模型应用特别之处在于大模型的引入,应用和大模型的适配是重点。在设计阶段,需要根据应用场景,自身条件(比如有没有算力和数据)来决定最终应用形式和模型适配方式。
应用需要考虑的问题:
-
全新应用 vs 现有应用LLM改造升级
-
聊天机器人(智能客服类)vs AI助手 vs Agent
-
单Agent vs 多Agent
模型需要考虑的问题:
-
开源 vs 闭源
-
购买公有云MaaS服务 vs 部署在私有云
-
大模型 vs 小模型 vs 多个模型
-
提示工程 vs RAG vs 微调
大模型应用架构
讨论企业大模型应用的架构之前,先来探索下Kimi,推测一下大模型应用应该有哪些组件。
PC浏览器登录Kimi的首页
-
Kimi提供PC浏览器和手机App,基于网页的BS架应用;
-
打开Kimi后,首先会提示登录或者注册,这跟传统应用没有区别,需要用户管理系统,后台会存储用户相关的数据;
-
登录成功后,可以直接输入提示词,也可以看到历史会话。如果是pc版,在对话框下面有系统提供的范例,或者说当用户没有特定目的的浏览,只是随便浏览体验,可以直接点系统提供提示词。可以推断,系统会有用户的会话历史库,这个只和当前用户有关,还有个提示词库,跟所有用户相关;
-
Kimi能够访问互联网,可以调用Web访问的插件。所以会有插件集成的组件,包括插件本身;
-
用户可以上传最多50个100M以下的文件,文件格式可以是pdf,doc,xlsx等。这样相当于用户给Kimi一些跟用户相关的领域知识,在这些文档里面查询和回复,比如总结要点,改写扩写等操作。这些文件存在哪里呢?推测系统会有嵌入模型,把这些文档向量化,存储到向量数据库里。
回到企业大模型应用,开发测试完成,上线部署,对外提供服务。假设以AI助手的应用模式,采用RAG方式的模型适配,并且大模型可以调用工具,访问互联网来查询信息。这种应用形式和模式适配方式,看看大模型应用的架构。
Nvida认为比较现实的LLM应用架构
借用英伟达的一个架构图。左侧是用户和设备,边缘的API端点;右侧是大模型工具和插件所访问的外部资源,比如向量数据库或者网站,中间是应用系统,中间的位置有两个模型,嵌入模型和推理大模型,是整个应用系统的核心。模型前面,有Guardrails,对用户的输入和模型的输出,提供安全过滤的能力,然后是提示词编排,上面关联着提示词库。模型后面,主要是模型插件和工具的分配和调度。
需要强调一点,这里讨论的只是比较有代表性的大模型应用架构,实际会有出入。比如,很多大模型应用实践,会用到多个大模型,根据用户的输入来判断,传递给哪一个模型来处理,比如一个专门处理图片OCR的小模型,再根据用户的意图,传递给大模型,输出给用户。
AI大模型学习福利
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享
四、AI大模型商业化落地方案
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。