第三章:
本章主要介绍了线性系统的时域分析,从系统的稳态入手讲述了几个系统的评价标准。从一阶入手,升至二阶一直于多阶系统。其中二阶系统最为重要。本章关键知识点有稳态系统误差求解,判断系统是否稳定的劳斯判据等。
一、典型输入信号:根据系统常遇到的输入信号形式,在数学描述加以理想化的一些基本输入函数。
二、动态性能和稳态性能
稳定是控制系统研究的前提,如果一个系统都不稳定,那么也就没有研究的必要。并且当系统能够稳定,那么当时间趋于无穷后,其动态过程必须要求收敛。
2.1 动态性能
如上图
上升时间 tr 调节时间 ts(响应保持在终值的2%或5%的范围内最短时间)
峰值时间 tp 超调量 %( %=)
其中上升时间反映的是系统的响应速度,一般是指从终值的10%到90%所用的时间,振荡系统也可以定义为响应从零到第一次上身到终值所用的时间。
2.2稳态性能
稳态误差是系统控制精度或抗扰动能力的一种度量。
三、一阶线性系统的时域分析
一阶线性系统:以一阶微分方程为运动方程的控制系统。
代表公式:
3.1 单位阶跃响应: (t>0)
上式中T为一阶系统的时间常数,一般当 t=T 时,c(T)=0.632;当t= 2T ,3T ,4T,时,c(t)分别等于终值的86.5%,95%,98.2%。由此可以采用实验的方法求得时间常数T,或者判断系统是否为一阶系统。并且0.632这个数字需要有意识的记住。
时间常数T反映了系统的惯性,惯性越小,反应越快;惯性越大反应越慢。
一阶系统的动态性能指标有:(类似于公式需要记住)
上升时间 tr=2.20T
系统在t=T的时候,斜率
调节时间 ts=3T(=5%) 或 ts=4T(=2%)
3.2 单位脉冲响应: (t>0)
注意:一阶线性系统的脉冲响应为单调下降的指数曲线
时间常数T反映了系统的惯性,惯性越小,反应越快;惯性越大反应越慢。
动态性能指标有:(类似于公式需要记住)
ts=3T(=5%)或ts=4T(=2%) 调节时间
注意:鉴于工程上无法得到理想的单位脉冲函数,因此常用具有一脉宽b和有幅度的矩形脉动函数来代替。要求实际脉动函数的宽度b远远小于系统的时间常数T,一般有b<0.1T.
3.2 单位斜坡响应: (t>0)
其中(t-T)为稳态分量,为动态分量
注意:当系统稳定时,一阶系统的单位斜坡响应的稳态分量是一个输入斜坡函数斜率相同但时间滞后了一个T的斜坡函数,因此位置上存在的跟踪误差恰好等于时间常数T.
e(t)=r(t)-c(t)=T
注意:在斜坡响应曲线中,输出量和输入量之间的位置误差随时间而增大,最后趋于常值T。惯性越小,跟踪的准确度越高。
3.3 单位加速度响应:
(t>0)
注意:由于跟踪误差随时间推移而增大,故一阶系统不能对实现加速度输入函数的跟踪。(所以能否实现对跟踪误差的跟踪取决于跟踪误差是否收敛)
注意:由一阶系统我们得知:
系统对输入信号导数的响应等于系统对该输入信号响应的导数,
系统对输入信号积分的响应等于系统对该输入信号响应的积分,
由此,当我们求得系统的单位阶跃响应后,我们对其微分就能得到该系统的单位脉冲响应,当我们对单位阶跃响应积分,就能够得到单位斜坡响应。