【ELM回归预测】人工兔算法优化极限学习机ARO-ELM数据回归预测【含Matlab源码 3834期】

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。

更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)

⛄一、人工兔算法优化极限学习机ARO-ELM数据回归预测

1 人工兔算法
摘要:人工兔优化算法( [Artificial rabbits optimization,RSO)是 Liying Wang等 于 2022 年提出的一种新型元启发式优化算法 。 该算法受来源于自然界中兔子的生存策略的启发,具有寻优能力强,收敛速度快的特点。

1.1 人工兔优化算法
人工兔优化算法利用真实兔子的觅食和隐藏策略,并通过能量收缩在两种策略之间进行转换。

1.1.1 绕道觅食(探索)
兔子觅食时,总是寻找远的,而忽略了近处的。它们只在其他区域随机吃草,而不是在自己的区域,把这种觅食行为称为绕道 时,兔子很可能会扰乱食物来源以获得足够的食物。因此,ARO的绕道㐍食行为表明,每个搜索个体倾向于向种群中随机选择的另一个 搜索个体更新自己的位置,并增加扰动。

1.1.2 随机躲藏(开发)
为了躲避捕食者,兔子通常会在它的稞穴周围挖一些不同的洞穴来藏身。在ARO算法中,每一次迭代,一只兔子总是沿看搜索空间的每 一个维度在它周围产生 d dd 个洞,并且总是从所有的洞中随机选择一个隐臧起来,以降低被捕食的概率。第 i ii 只兔子的第 j jj 个洞穴由以下公式 产生:

1.1.3 能量收缩(从探索转向开发)
在ARO算法中,兔子在迭代的初始阶段经常进行绕道觅食,而在迭代的后期则经常进行随机隐藏。这种搜索机制是由兔子的能量产生 的,随着时间的推移,兔子的能量会逐渐减少。因此,设计了一个能量因子来模拟从探索到开发的转换过程。

2 ELM
ELM自2004年南洋理工大学的黄广斌教授提出相关概念以来一直争议不断,但每年相关论文层出不穷,在过去的十年里其理论和应用被广泛研究。如果您想深入学习和了解ELM的原理,博主建议可在ScienceDirect的数据库中检索ELM相关论文,里面有众多优质论文其理解和表述将帮助你更准确了解ELM的内在原理。

2.1 算法的原理
极限学习机(ELM)用来训练单隐藏层前馈神经网络(SLFN)与传统的SLFN训练算法不同,极限学习机随机选取输入层权重和隐藏层偏置,输出层权重通过最小化由训练误差项和输出层权重范数的正则项构成的损失函数,依据Moore-Penrose(MP)广义逆矩阵理论计算解析求出。理论研究表明,即使随机生成隐藏层节点,ELM仍保持SLFN的通用逼近能力。在过去的十年里,ELM的理论和应用被广泛研究,从学习效率的角度来看,极限学习机具有训练参数少、学习速度快、泛化能力强的优点。

简单来说,极限学习机(ELM)模型的网络结构与单隐层前馈神经网络(SLFN)一样,只不过在训练阶段不再是传统的神经网络中屡试不爽的基于梯度的算法(后向传播),而采用随机的输入层权值和偏差,对于输出层权重则通过广义逆矩阵理论计算得到。所有网络节点上的权值和偏差得到后极限学习机(ELM)的训练就完成了,这时测试数据过来时利用刚刚求得的输出层权重便可计算出网络输出完成对数据的预测。

⛄二、部分源代码

%% 初始化
clear
close all
clc
format shortg
warning off
addpath(‘func_defined’)

%% 读取读取
data=xlsread(‘数据.xlsx’,‘Sheet1’,‘A1:N252’); %%使用xlsread函数读取EXCEL中对应范围的数据即可

%输入输出数据
input=data(:,1:end-1); %data的第一列-倒数第二列为特征指标
output=data(:,end); %data的最后面一列为输出的指标值

N=length(output); %全部样本数目
testNum=15; %设定测试样本数目
trainNum=N-testNum; %计算训练样本数目

%% 划分训练集、测试集
input_train = input(1:trainNum,:)‘;
output_train =output(1:trainNum)’;
input_test =input(trainNum+1:trainNum+testNum,:)‘;
output_test =output(trainNum+1:trainNum+testNum)’;

%% 数据归一化
[inputn,inputps]=mapminmax(input_train,-1,1);
[outputn,outputps]=mapminmax(output_train);
inputn_test=mapminmax(‘apply’,input_test,inputps);

%% 获取输入层节点、输出层节点个数
inputnum=size(input,2);
outputnum=size(output,2);
disp(‘/’)
disp(‘极限学习机ELM结构…’)
disp([‘输入层的节点数为:’,num2str(inputnum)])
disp([‘输出层的节点数为:’,num2str(outputnum)])
disp(’ ')
disp(‘隐含层节点的确定过程…’)

%确定隐含层节点个数
%注意:BP神经网络确定隐含层节点的方法是:采用经验公式hiddennum=sqrt(m+n)+a,m为输入层节点个数,n为输出层节点个数,a一般取为1-10之间的整数
%在极限学习机中,该经验公式往往会失效,设置较大的范围进行隐含层节点数目的确定即可。

MSE=1e+5; %初始化最小误差
for hiddennum=20:30

%用训练数据训练极限学习机模型

[IW0,B0,LW0,TF,TYPE] = elmtrain(inputn,outputn,hiddennum);

%对训练集仿真
an0=elmpredict(inputn,IW0,B0,LW0,TF,TYPE);  %仿真结果
mse0=mse(outputn,an0);  %仿真的均方误差
disp(['隐含层节点数为',num2str(hiddennum),'时,训练集的均方误差为:',num2str(mse0)])

%更新最佳的隐含层节点
if mse0<MSE
    MSE=mse0;
    hiddennum_best=hiddennum;
end

end
disp([‘最佳的隐含层节点数为:’,num2str(hiddennum_best),‘,相应的均方误差为:’,num2str(MSE)])

%% 训练最佳隐含层节点的极限学习机模型
disp(’ ')
disp(‘ELM极限学习机:’)
[IW0,B0,LW0,TF,TYPE] = elmtrain(inputn,outputn,hiddennum_best);

%% 模型测试
an0=elmpredict(inputn_test,IW0,B0,LW0,TF,TYPE); %用训练好的模型进行仿真
test_simu0=mapminmax(‘reverse’,an0,outputps); % 预测结果反归一化
%误差指标
[mae0,mse0,rmse0,mape0,error0,errorPercent0]=calc_error(output_test,test_simu0);

%% 人工兔算法寻最优权值阈值
disp(’ ')
disp(‘ARO优化ELM极限学习机:’)
%初始化BES参数
SearchAgents_no=30; %初始种群规模
Max_iter=100; %最大进化代数
dim=inputnumhiddennum_best+hiddennum_best; %自变量个数
%自变量下限
lb=[-ones(1,inputnum
hiddennum_best) … %输入层到隐含层的连接权值范围是[-1 1] 下限为-1
zeros(1,hiddennum_best)]; %隐含层阈值范围是[0 1] 下限为0
%自变量上限
ub=ones(1,dim);
fobj=@(x)fitness(x,hiddennum_best, inputn, outputn, output_train, inputn_test ,outputps, output_test);
[Alpha_score,bestX,Convergence_curve,]=ARO(SearchAgents_no,Max_iter,lb,ub,dim,fobj);
%% 绘制进化曲线
figure
plot(Convergence_curve,‘r-’,‘linewidth’,2)
xlabel(‘进化代数’)
ylabel(‘均方误差’)
legend(‘最佳适应度’)
title(‘ARO的进化曲线’)

%% 优化后的参数训练ELM极限学习机模型
[IW1,B1,LW1,TF,TYPE] = elmtrain(inputn,outputn,hiddennum_best,bestX ); %IW1 B1 LW1为优化后的ELM求得的训练参数
hiddennum_best
%% 优化后的ELM模型测试
an1=elmpredict(inputn_test,IW1,B1,LW1,TF,TYPE);
test_simu1=mapminmax(‘reverse’,an1,outputps);

%误差指标
[mae1,mse1,rmse1,mape1,error1,errorPercent1]=calc_error(output_test,test_simu1);

%% 作图
figure
plot(output_test,‘b-.o’,‘linewidth’,2)
hold on
plot(test_simu0,‘g-s’,‘linewidth’,2)
hold on
plot(test_simu1,‘r-p’,‘linewidth’,2)
legend(‘真实值’,‘ELM预测值’,‘ARO-ELM预测值’)
xlabel(‘测试样本编号’)
ylabel(‘指标值’)
title(‘优化前后的ELM模型预测值和真实值对比图’)

figure
plot(error0,‘b-s’,‘markerfacecolor’,‘g’)
hold on
plot(error1,‘r-p’,‘markerfacecolor’,‘g’)
legend(‘ELM预测误差’,‘ARO-ELM预测误差’)
xlabel(‘测试样本编号’)
ylabel(‘预测偏差’)
title(‘优化前后的ELM模型预测值和真实值误差对比图’)

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]赵侃,师芸,牛敏杰,王虎勤.基于改进麻雀搜索算法优化BP神经网络的PM2.5浓度预测[J].测绘通报. 2022(10)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

  • 14
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值