【智能算法】人工兔优化算法(ARO)原理及实现

本文介绍了2022年由Wang等人提出的基于自然界兔子生存策略的人工兔优化算法(ARO),该算法模仿了兔子的迂回觅食和随机隐藏行为,用于解决工程优化问题。算法通过动态调整能量因子实现搜索机制的灵活切换。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.背景

2022年,Wang等人受到自然界中兔子生存策略启发,提出了人工兔优化算法(ArtificialRabbits Optimization, ARO)。

2.算法原理

2.1算法思想

ARO模拟了自然界中兔子的生存策略,包括迂回觅食和随机隐藏
在这里插入图片描述

2.2算法过程

迂回觅食

在迂回觅食阶段,假设种群中的每只兔子都有自己的区域,有一些草和洞穴,兔子总是随机地访问彼此的位置觅食。事实上,在觅食时,兔子很可能会扰乱食物来源以获取足够的食物。因此,ARO 算法的迂回觅食行为意味着每个搜索个体倾向于使用向群中随机选择的其他搜索个体的位置来更新其位置,并添加扰动。
X i ( t + 1 ) = X j ( t ) + R ⋅ ( X i ( t ) − X j ( t ) ) + round ( 0.5 ∙ ( 0.05 + r 1 ) ) ∙ r 2 (1) \begin{aligned}X_i\left(t+1\right)=&X_j\left(t\right)+R\cdot\left(X_i\left(t\right)-X_j\left(t\right)\right)+\text{round}\left(0.5\bullet\left(0.05+r_1\right)\right)\bullet r_2\end{aligned}\tag{1} Xi(t+1)=Xj(t)+R(Xi(t)Xj(t))+round(0.5(0.05+r1))r2(1)
R 表示移动步长:
R = ( e − e ( t − 1 T ) 2 ) ∙ sin ⁡ ( 2 π r 3 ) ∙ c (2) R=(e-e^{(\frac{t-1}{T})^2})\bullet\sin(2\pi r_3)\bullet c\tag{2} R=(ee(Tt1)2)sin(2πr3)c(2)

随机隐藏

为了躲避捕食者,兔子通常会在巢穴周围挖一些不同的洞来躲藏。在 ARO 算法的每次迭代中,兔子总是沿着搜索空间的每个维度在其周围产生若干个洞穴,并且总是从所有洞穴中随机选择一个进行隐藏,以降低被捕食的概率。
X i ( t + 1 ) = X i ( t ) + R ∙ ( r 4 ∙ H ∙ g ∙ X i ( t ) − X i ( t ) ) (3) \begin{aligned}X_i\left(t+1\right)=&X_i\left(t\right)+R\bullet\left(r_4\bullet H\bullet g\bullet X_i\left(t\right)-\right.X_i\left(t\right))\end{aligned}\tag{3} Xi(t+1)=Xi(t)+R(r4HgXi(t)Xi(t))(3)
H 为隐藏参数:
H = T − t + 1 T ∙ r 5 (4) H=\frac{T-t+1}T\bullet r_5\tag{4} H=TTt+1r5(4)
在 ARO 算法中,兔子总是倾向于在迭代初始阶段频繁地进行迂回觅食,而在迭代后期阶段频繁地进行随机隐藏,这种搜索机制取决于兔子的能量,它会随着时间的推移而逐渐收缩。能量因子A :
A ( t ) = 4 ∙ ( 1 − t T ) ∙ ln ⁡ 1 r 6 (5) A(t)=4\bullet(1-\frac tT)\bullet\ln\frac1{r_6}\tag{5} A(t)=4(1Tt)lnr61(5)
在这里插入图片描述
伪代码
在这里插入图片描述

3.结果展示

在这里插入图片描述

4.参考文献

[1] Wang L, Cao Q, Zhang Z, et al. Artificial rabbits optimization: A new bio-inspired meta-heuristic algorithm for solving engineering optimization problems[J]. Engineering Applications of Artificial Intelligence, 2022, 114: 105082.

### 人工优化算法 (ARO)实现与介绍 #### 算法概述 人工优化 (Artificial Rabbits Optimization, ARO) 是一种受自然界中子行为启发的元启发式优化算法。它由Liying Wang等人于2022年首次提出,并发表在《Engineering Applications of Artificial Intelligence》期刊上[^1]。该算法的核心思想来源于子的两种主要生存策略:绕道觅食和随机隐藏。 - **绕道觅食**:这种策略使得子倾向于在其巢穴周围寻找食物,从而避免暴露给捕食者。 - **随机隐藏**:当面临威胁时,子会随机选择一个洞穴进行躲避,以此降低被捕获的风险。 这两种策略通过能量收缩机制动态切换,即随着能量逐渐消耗,子的行为模式从绕道觅食转向随机隐藏[^3]。 --- #### 数学模型 ARO算法的主要操作可以通过以下数学表达式描述: 1. 绕道觅食阶段: \[ X_{i}^{t+1} = X_i^t + r_1 \cdot (\overline{X}_b - |r_2| \cdot D) \] 其中 \(X_i\) 表示第\(i\)子的位置;\(\overline{X}_b\)表示当前最优位置;\(D\)为距离矩阵;\(r_1\) 和 \(r_2\) 是两个服从均匀分布的随机数[^4]。 2. 随机隐藏阶段: \[ X_{i}^{t+1} = X_r + r_3 \cdot (\text{UB} - \text{LB}) \] 这里 \(X_r\)是从群体中随机选取的一只子的位置;\(\text{UB}\)和\(\text{LB}\)分别代表变量的上下界;\(r_3\)是一个随机系数。 3. 能量控制机制: 当前个体的能量水平决定了其处于哪种状态(绕道觅食或随机隐藏),具体计算方式如下: \[ E_t = E_0 \cdot e^{-\alpha t} \] 其中 \(E_0\)是初始能量;\(\alpha\)是衰减因子;\(t\)是迭代次数。 --- #### MATLAB代码实现 以下是基于上述理论框架的一个简单MATLAB实现版本: ```matlab function [bestPosition, bestFitness] = artificialRabbitsOptimization(fitnessFunc, lb, ub, popSize, maxIter) % 参数初始化 dim = length(lb); population = zeros(popSize, dim); fitnessValues = zeros(1, popSize); % 初始化种群及其适应度值 for i = 1:popSize population(i,:) = lb + rand(1,dim).*(ub-lb); fitnessValues(i) = fitnessFunc(population(i,:)); end % 找到全局最佳解 [~, idxBest] = min(fitnessValues); globalBestPos = population(idxBest,:); alpha = 0.9; % 衰减速率参数 energy = ones(1,popSize); % 初始能量设为1 for iter = 1:maxIter for i = 1:popSize currentEnergy = exp(-alpha * iter / maxIter); % 更新能量 if energy(i) >= currentEnergy % 绕道觅食 rabbitPos = population(i,:); leaderPos = globalBestPos; r1 = rand(); r2 = rand() - 0.5; distanceMatrix = abs(rabbitPos - mean(population)); % 计算距离 newPosition = rabbitPos + r1 .* (leaderPos - abs(r2).*distanceMatrix); else % 随机隐藏 randomRabbitIdx = ceil(rand()*popSize); randomRabbitPos = population(randomRabbitIdx,:); r3 = rand(size(dim)); newPosition = randomRabbitPos + r3.*(ub-lb); end % 边界处理 newPosition = max(newPosition,lb); newPosition = min(newPosition,ub); newFitnessValue = fitnessFunc(newPosition); if newFitnessValue < fitnessValues(i) population(i,:) = newPosition; fitnessValues(i) = newFitnessValue; if newFitnessValue < fitnessValues(idxBest) globalBestPos = newPosition; fitnessValues(idxBest) = newFitnessValue; end end end fprintf('Iteration %d/%d Best Fitness:%f\n',iter,maxIter,min(fitnessValues)); end bestPosition = globalBestPos; bestFitness = min(fitnessValues); end ``` 此代码实现了基本版的ARO逻辑,适用于连续域上的单目标优化问题。 --- #### 应用场景 ARO已被成功应用于多个领域,包括但不限于: - 工程设计优化问题; - 故障诊断中的神经网络训练调参; - 复杂系统的路径规划任务等。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小O的算法实验室

谢谢大佬的肯定!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值