【CNN回归预测】注意力机制结合卷积神经网络CNN-attention回归预测【含Matlab源码 3729期】

本文介绍了CNN-Attention模型在回归预测中的应用,结合卷积层和注意力机制,提升特征表示的准确性。并通过Matlab代码示例展示了如何构建和应用这种模型进行数据预处理和网络结构设计。
摘要由CSDN通过智能技术生成

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。

更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)

⛄一、注意力机制结合卷积神经网络CNN-attention回归预测

近年来,深度学习技术在各个领域取得了巨大的成功,其中卷积神经网络(CNN)作为一种重要的深度学习模型,在图像识别、自然语言处理等领域都得到了广泛的应用。而在回归预测问题中,CNN-Attention模型的引入也取得了一定的成果。本文将介绍基于注意力机制的卷积神经网络CNN-Attention在回归预测中的应用。

首先,我们先来了解一下卷积神经网络(CNN)。CNN是一种专门用于处理具有类似网格结构的数据的深度学习模型,它在图像处理领域表现出色。CNN通过卷积层、池化层和全连接层等组件,能够有效地提取图像中的特征,并进行分类或者识别。在回归预测问题中,CNN也可以用于提取输入数据的特征,并进行回归分析。

而注意力机制则是一种用于模拟人类视觉或者听觉系统的机制,它可以让模型在处理输入数据时,更加关注重要的部分,从而提高模型的表现。在深度学习领域,注意力机制已经被广泛应用于各种模型中,包括循环神经网络(RNN)、Transformer等。

结合CNN和注意力机制,我们就得到了CNN-Attention模型。在回归预测问题中,CNN-Attention模型可以通过卷积层提取输入数据的特征,然后通过注意力机制来对这些特征进行加权,从而得到更加关注重要特征的表示。最后,再通过全连接层等组件,将这些表示映射到预测结果空间,完成回归预测任务。

在实际应用中,CNN-Attention模型已经在多个领域取得了成功。例如,在医学影像分析中,CNN-Attention模型可以更加准确地定位病变部位;在自然语言处理中,CNN-Attention模型可以更好地理解句子中的重要信息。同时,由于CNN-Attention模型的端到端的特性,它也能够更加方便地与其他模型进行集成,从而进一步提高预测性能。

总之,基于注意力机制的卷积神经网络CNN-Attention在回归预测问题中具有广阔的应用前景。随着深度学习技术的不断发展,相信CNN-Attention模型将会在更多领域取得突破性的进展,为我们解决实际问题提供更加强大的工具和方法。

⛄二、部分源代码

%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行

%% 导入数据
res = xlsread(‘数据集.xlsx’);

%% 划分训练集和测试集
temp = randperm(103);

P_train = res(temp(1: 80), 1: 7)‘;
T_train = res(temp(1: 80), 8)’;
M = size(P_train, 2);

P_test = res(temp(81: end), 1: 7)‘;
T_test = res(temp(81: end), 8)’;
N = size(P_test, 2);

%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax(‘apply’, P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax(‘apply’, T_test, ps_output);

%% 数据平铺
% 将数据平铺成1维数据只是一种处理方式
% 也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
% 但是应该始终和输入层数据结构保持一致
p_train = double(reshape(p_train, 7, 1, 1, M));
p_test = double(reshape(p_test , 7, 1, 1, N));
t_train = double(t_train)‘;
t_test = double(t_test )’;

%% 构造网络结构
layers = [
imageInputLayer([7, 1, 1]) % 输入层 输入数据规模[7, 1, 1]

convolution2dLayer([3, 1], 16, ‘Padding’, ‘same’) % 卷积核大小 3*1 生成16张特征图
batchNormalizationLayer % 批归一化层
reluLayer % Relu激活层

maxPooling2dLayer([2, 1], ‘Stride’, [1, 1]) % 最大池化层 池化窗口 [2, 1] 步长 [1, 1]

convolution2dLayer([3, 1], 32, ‘Padding’, ‘same’) % 卷积核大小 3*1 生成32张特征图
batchNormalizationLayer % 批归一化层
reluLayer % Relu激活层

dropoutLayer(0.1) % Dropout层

fullyConnectedLayer(16, “Name”, “fc_2”) % SE注意力机制,通道数的1 / 4
reluLayer(“Name”, “relu_3”) % 激活层
fullyConnectedLayer(64, “Name”, “fc_3”) % SE注意力机制,数目和通道数相同
fullyConnectedLayer(1) % 全连接层

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]赵侃,师芸,牛敏杰,王虎勤.基于改进麻雀搜索算法优化BP神经网络的PM2.5浓度预测[J].测绘通报. 2022(10)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

  • 19
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值