【PSO三维路径规划】粒子群算法PSO多无人机协同集群避障路径规划(目标函数:最低成本:路径、高度、威胁、转角)【含Matlab源码 4962期】

💥💥💥💥💥💥💥💥💞💞💞💞💞💞💞💞💞Matlab武动乾坤博客之家💞💞💞💞💞💞💞💞💞💥💥💥💥💥💥💥💥
🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀
在这里插入图片描述
🔊博主简介:985研究生,Matlab领域科研开发者;

🚅座右铭:行百里者,半于九十。

🏆代码获取方式:
CSDN Matlab武动乾坤—代码获取方式

更多Matlab路径规划仿真内容点击👇
Matlab路径规划(进阶版)

⛳️关注CSDN Matlab武动乾坤,更多资源等你来!!

⛄一、 粒子群算法PSO多无人机协同集群避障路径规划简介

1 无人机航迹规划问题的数学模型
建立三维航迹规划问题的数学模型时, 不但考虑无人机基本约束, 还考虑复杂的飞行环境, 包括山体地形和雷暴威胁区。

1.1 无人机基本约束
规划的无人机三维航迹, 通常需要满足一些基本约束, 包括最大转弯角、最大爬升角或下滑角、最小航迹段长度、最低和最高飞行高度, 以及最大航迹长度等约束。其中, 最大转弯角约束, 是指无人机只能在水平面内小于或等于指定的最大转弯角内转弯;最大爬升角或下滑角约束, 是指无人机只能在垂直平面内小于或等于指定的最大爬升角或下滑角内爬升或下滑;最小航迹段长度约束, 要求无人机改变飞行姿态之前, 按目前的航迹方向飞行的最短航程;最低和最高飞行高度约束, 要求无人机在指定的飞行高度区间飞行;最大航迹长度约束, 是指无人机的航迹长度小于或等于指定的阈值。

记q (x, y, z, θ, ψ) 为无人机的飞行位置与姿态, 其中, (x, y, z) 为无人机的位置, θ为无人机的水平转弯角, ψ为无人机的竖直爬升角或下滑角, 进而建立上述基本约束的数学表达式。

1.2 飞行环境障碍物和威胁区建模
在飞行环境中, 高耸的山体近似采用圆锥体等效表示, 用以e为底的自然指数图形生成, 那么, 山体地形可以通过多个位置不同的圆锥体叠加而成。若将参考海拔基准高度设置为xOy平面, 记 (x, y, z) 为山体地形中的点, 那么
在这里插入图片描述
式中:N为山体个数;xk0和yk0为第k座山体中心对称轴的横坐标和纵坐标;hk为第k座山体的最大高度;xki和yki为第k座山体的横向斜度和纵向斜度。

在飞行环境中, 山体附近通常存在雷暴等极端气象, 本文视为飞行威胁区, 并通过球体近似等效表示, 且记第k座山体附近飞行威胁区的球心坐标为 (xks0, yks0, zks0) , 半径为rk。

1.3 目标函数及航迹表示
在本文中, 执行任务的某型无人机, 其航迹规划的目标函数是生成一条由起始点到目标点的无碰撞可行航迹。采用q (x, y, z, θ, ψ) 表示无人机在飞行空域中某特定位置的特定姿态, 那么 (x, y, z) 则表示无人机所在航迹点, θ表示无人机的水平转弯角, ψ表示无人机的竖直爬升角或下滑角。采用r (q) 表示由起始点qinitial到目标点qgoal的无碰撞可行航迹, 那么航迹规划的过程可以写成如下形式:
在这里插入图片描述

2 粒子群算法PSO多无人机协同集群避障路径规划

⛄二、部分源代码和运行步骤

1 部分代码
close all
clear
clc
dbstop if all error
global model
model = CreateModel(); % 创建模型
F=‘F1’;
[Xmin,Xmax,dim,fobj] = fun_info(F);%获取函数信息
pop=40;%种群大小(可以自己修改)
maxgen=150;%最大迭代次数(可以自己修改)
[fMin,bestX,ConvergenceCurve] = (pop, maxgen,Xmin,Xmax,dim,fobj);

%% 计算无人机的相关信息
N=length(bestX)/(3model.n);%无人机的数量
St=1;
for i=1:N %计算每个无人机的适应度值
Et=St+3
model.n-1;
Xbest=bestX(St:Et);
BestPosition(i,:) = SphericalToCart(Xbest);%% 计算航迹坐标
BestFit(i)=MyCost(Xbest,1);%% 计算每个无人机的适应度值
UAVfit(i,:)=MyCost(Xbest,2);
St=Et+1;
end

%% 保存结果
save BestPosition BestPosition %每个无人机的航迹坐标
save BestFit BestFit %每个无人机的总成本
save UAVfit UAVfit % 每个无人机的四个成本
save ConvergenceCurve ConvergenceCurve % 无人机集群的成本随迭代次数的变化

%% 画图
ColStr={‘r-.’,‘g–’,‘b-.’,‘c–’,‘m-.’};%颜色
LegendStr={‘UAV1’,‘UAV2’,‘UAV3’,‘UAV4’,‘UAV5’};

%图1 算法收敛曲线图
gca1=figure(1);
plot(ConvergenceCurve,‘g-’,‘linewidth’,1.5)
xlabel(‘迭代次数’);
ylabel(‘全部无人机总成本’);
legend(‘WOA’)

%图2和图3 无人机轨迹图
gca2=figure(2);
gca3=figure(3);
[h11,h12]=PlotSolution(BestPosition(1,:),model,ColStr{1},gca2,gca3);
[h21,h22]=PlotSolution(BestPosition(2,:),model,ColStr{2},gca2,gca3);
[h31,h32]=PlotSolution(BestPosition(3,:),model,ColStr{3},gca2,gca3);
[h41,h42]=PlotSolution(BestPosition(4,:),model,ColStr{4},gca2,gca3);
[h51,h52]=PlotSolution(BestPosition(5,:),model,ColStr{5},gca2,gca3);
legend([h11,h21,h31,h41,h51],LegendStr,‘location’,‘NorthWest’);
legend([h12,h22,h32,h42,h52],LegendStr,‘location’,‘NorthWest’);
% colormapStr=othercolor(61);
% colormap(gca2,colormapStr);
% colormap(gca3,colormapStr);

figure
bar(BestFit)
set(gca,‘xtick’,1:1:5);
set(gca,‘XTickLabel’,LegendStr)
ylabel(‘总成本’)

2 通用运行步骤
(1)直接运行main.m即可一键出图

⛄三、运行结果

在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]周东健,张兴国,马海波,李成浩,郭旭.基于栅格地图-蚁群算法的机器人最优路径规划[J].南通大学学报(自然科学版). 2013,12(04)
[2]田疆,李二超.用于无人机三维航迹规划改进连接型快速扩展随机树算法[J].航空工程进展. 2018,9(04)
[3]朱收涛.采用改进粒子群算法的无人机协同航迹规划[J].光电与控制.2012
[4]张航,高岳林.求解带容量约束车辆路径问题的改进蚁群算法[J].宝鸡文理学院学报(自然科学版). 2022,42(03)
[5]龚艺,冉金超,侯明明.基于遗传算法的多目标外卖路径规划[J].电子技术与软件工程. 2019,(10)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化

2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类

2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测

2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测

3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别

3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建

4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题

4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划

4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划

4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配

5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏

6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏

7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断

7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真

7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真

7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰

7.5 无人机通信

7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

<think>好的,我现在需要帮助用户使用PSO算法实现三架无人机的集群编队路径规划。首先,我得回忆一下PSO的基本原理。PSO是一种群体智能优化算法,通过粒子群的协作来寻找优解。每个粒子代表一个潜在的解,通过速度和位置的更新来迭代优化。 用户的问题涉及到无人机编队,可能需要考虑路径的协同和避障。三架无人机的编队通常会有特定的队形,比如三角形或者V字形。这时候,每个无人机路径不仅要考虑自身的起点到终点,还要保持相对的位置,同时避免碰撞和障碍物。 接下来,我需要确定如何将编队问题转化为PSO的优化问题。目标函数的设计是关键。可能需要包括几个部分:编队保持误差,路径长度,避障惩罚项,以及可能的平滑性约束。例如,编队保持误差可以用无人机之间的实际距离与望距离的差异来衡量。路径长度则是各无人机路径的总和,避障惩罚则通过检测路径点与障碍物的距离来施加。 然后,粒子的表示方式也很重要。对于三架无人机,每个粒子可能需要包所有无人机路径信息。例如,如果路径用一系列航点表示,每个粒子可能是一个高维向量,包所有航点的坐标。假设每架无人机有N个航点,每个航点有x,y,z三个坐标,那么一个粒子的维度就是3架×N点×3维=9N维。这样的高维空间可能需要较的粒子数和迭代次数,或者采用一些降维策略。 接下来是PSO参数的设置。惯性权重w,认知系数c1,社会系数c2的选择会影响收敛性。可能需要动态调整惯性权重,初较大以促进探索,后减小以加强局部搜索。此外,粒子的速度和位置需要限制在合理范围内,比如速度不超过大飞行速度,位置不超过规划空间的范围。 在实现过程中,还需要考虑约束条件。例如,无人机小转弯半径,大加速度,以及动态障碍物的规避。这些约束可能需要通过惩罚函数的方式加入到目标函数中,或者在更新位置后进行修正,比如如果新位置违反了约束,则调整速度或位置。 另外,无人机之间的协同可能需要分布式或集中式的优化策略。集中式处理所有路径规划可能计算量大,但容易协调;分布式则每个无人机单独规划,但需要通信机制来保持队形。这里用户希望用PSO,可能更适合集中式处理,将整个编队作为整体优化。 还需要考虑实时性的问题。PSO是迭代算法,计算时间可能较长,对于实时路径规划可能需要优化算法结构,或者结合其他快速规划方法作为初始解。 然后,代码实现方面,需要定义粒子类,包位置、速度、个体优和适应度值。初始化粒子群,随机生成路径点。适应度函数计算每个粒子的目标函数值,包括编队误差、路径长度、避障等。在迭代过程中更新速度和位置,并处理约束条件。 测试阶段,可能需要使用仿真环境,如ROS Gazebo,或者自定义的二维/三维环境来验证路径的有效性。可视化编队路径和动态调整过程,观察是否满足避障和队形保持的要求。 可能遇到的问题包括局部优解,导致编队无法有效避障路径过长。这时候可以考虑引入变异操作,或者混合其他算法如遗传算法的交叉变异策略,增加种群的样性。 后,用户可能需要进一步的优化方法,比如动态调整粒子群参数,或者结合其他传感器数据进行实时修正。此外,目标优化也是一个方向,同时优化个指标,使用帕累托前沿的方法进行权衡。</think>### PSO算法实现无人机集群编队路径规划步骤 #### 1. 问题建模 设三架无人机需从起点$S_1,S_2,S_3$到达目标点$T_1,T_2,T_3$,同时保持三角形编队。定义每个粒子的位置向量为: $$X = [\underbrace{x_{1t},y_{1t},z_{1t}}_{\text{UAV1路径点}}, \underbrace{x_{2t},y_{2t},z_{2t}}_{\text{UAV2路径点}}, \underbrace{x_{3t},y_{3t},z_{3t}}_{\text{UAV3路径点}}]$$ 其中$t=1,2,...,N$为路径点序号[^1] #### 2. 适应度函数设计 $$f = w_1\sum_{i=1}^3 L_i + w_2\sum_{i \neq j}||d_{ij}-\hat{d}_{ij}|| + w_3\sum_{k=1}^M \frac{1}{dist_{obs}^k}$$ - $L_i$: 第i架无人机路径长度 - $d_{ij}$: 无人机间实际距离 - $\hat{d}_{ij}$: 望编队距离 - $dist_{obs}^k$: 到第k个障碍物的距离 #### 3. 算法实现流程 ```python import numpy as np class Particle: def __init__(self, dim): self.position = np.random.uniform(-10, 10, dim) # 三维空间坐标 self.velocity = np.zeros(dim) self.best_pos = self.position.copy() self.best_fitness = float('inf') class PSO_UAV: def __init__(self, n_particles=50, max_iter=200): self.w = 0.729 # 惯性权重 self.c1 = self.c2 = 1.494 # 学习因子 self.particles = [Particle(3*3*N) for _ in range(n_particles)] # 3架×3维×N路径点 def fitness(self, X): # 解码路径、计算编队误差、避障惩罚等 return total_cost def update(self): for p in self.particles: # 速度更新公式 new_v = self.w*p.velocity + \ self.c1*np.random.rand()*(p.best_pos - p.position) + \ self.c2*np.random.rand()*(g_best_pos - p.position) # 位置更新与约束处理 p.position = np.clip(p.position + new_v, -15, 15) # 更新优解 current_fit = self.fitness(p.position) if current_fit < p.best_fitness: p.best_pos = p.position.copy() p.best_fitness = current_fit ``` #### 4. 关键技术优化 - **动态惯性权重**:采用线性递减策略$w = w_{max} - (w_{max}-w_{min}})×\frac{t}{T_{max}}$ - **速度约束**:设置$v_{max} = 0.2×搜索空间宽度$ - **障碍物处理**:采用势场法生成排斥力项 $$F_{rep} = \sum_{k=1}^M \frac{Q}{dist_{obs}^k} \cdot \frac{\partial dist_{obs}^k}{\partial X}$$ #### 5. 三维路径可视化 使用Matplotlib实现动态显示: ```python from mpl_toolkits.mplot3d import Axes3D def plot_3d_path(positions): fig = plt.figure() ax = fig.add_subplot(111, projection='3d') colors = ['r','g','b'] for i in range(3): path = positions[i*3*N : (i+1)*3*N] # 提取第i架无人机路径 ax.plot(path[::3], path[1::3], path[2::3], c=colors[i], marker='o') plt.show() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值