FAST角点简介

FAST算法是一种快速角点检测方法,通过比较像素点与其邻域内像素的亮度差异来寻找角点。它包括检测、筛选、最大值抑制和描述子生成等步骤,并通过机器学习方法优化特征点的选择。然而,FAST不具有SIFT的尺度和旋转不变性,且在高噪声环境下性能会下降。
摘要由CSDN通过智能技术生成

FAST可以看做是提取角点的一种算法,当然也有人认为FAST-9等对边缘具有极强的响应(ORB_SLAM中);最早由Edward Rosten 和 Tom Drummond在2005年提出 [1]

以下是关于matlab中FAST特征点检测的介绍和演示: 1. 简介FAST(Features from Accelerated Segment Test)是一种用于特征点检测的算法,它是一种基于灰度值的角点检测算法,具有速度快、鲁棒性好等优点,被广泛应用于计算机视觉领域。 2. FAST的原理介绍: 2.1 特征点检测: FAST算法的特征点检测过程是通过比较像素点与其周围像素点的灰度值大小来实现的。对于一个像素点,如果它的灰度值比周围的n个像素点的灰度值都要高或都要低,那么这个像素点就被认为是一个特征点。 2.2 极值点抑制: 在FAST算法中,由于一个角点周围可能存在多个相邻的角点,因此需要进行极值点抑制,以保证检测到的特征点是唯一的。极值点抑制的方法是,对于检测到的每个特征点,计算它与周围16个像素点的灰度值差,如果存在连续的n个像素点的灰度值差都大于一个阈值t,那么这个特征点就被保留下来,否则就被抑制掉。 3. matlab源码实现: 可以使用引用中提供的matlab源代码实现FAST特征点检测。具体实现方法可以参考testMyFAST.m文件和myFAST.m文件中的注释。 4. 结果展示: 以下是使用引用中提供的matlab源代码实现FAST特征点检测的结果展示: ```matlab % 加载测试图像 img = imread('lena.jpg'); % 转换为灰度图像 grayImg = rgb2gray(img); % 检测FAST特征点 points = myFAST(grayImg, 20, true); % 显示检测结果 imshow(img); hold on; plot(points(:,1), points(:,2), 'r.'); ``` 结果展示了lena图像中检测到的FAST特征点。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值