卷积神经网络(Convolutional Neural Network,CNN)是深度学习中常用的一种模型,在图像识别、目标检测等领域取得了巨大的成功。然而,训练深度神经网络时往往面临梯度消失和梯度爆炸等问题,也容易陷入过拟合。为了解决这些问题,批归一化技术应运而生。本文将对卷积神经网络中的批归一化技术进行解析,并讨论其原理和优势。
批归一化的原理 批归一化是通过对每个小批量样本进行归一化处理,将输入数据转化为均值为0、标准差为1的分布。具体而言,对于每个特征通道,批归一化会计算该通道在当前小批量样本的均值和标准差,并将样本的特征按照如下公式进行归一化:x' = (x - μ) / σ
其中,x'是归一化后的特征,x是原始特征,μ是均值,σ是标准差。通过对数据进行归一化,批归一化可以减小输入数据的变化范围,使得模型更容易学习到有效的特征表示。
批归一化的优势</