模型预测控制(MPC):理论解析与车辆电子稳定控制系统(ESC)应用案例

MPC概述

模型预测控制(Model Predictive Control,简称MPC)是一种先进的控制策略,它结合了过程模型、在线优化和滚动时间窗口的概念来计算控制输入序列。MPC的核心在于使用一个过程模型来预测未来的系统行为,并通过优化一个成本函数来确定一系列控制动作,这个成本函数旨在指导系统沿着期望的轨迹运行。优化过程考虑了系统的动态约束、操作限制以及可能的控制约束。一旦计算出最优控制序列,通常只实施序列中的第一个控制动作,然后控制器根据新的系统状态更新预测和重新优化过程,这种方法称为滚动优化或递归反馈。MPC特别适合于处理多变量耦合系统、非线性系统以及含有约束的控制问题。


MPC基本原理

1. 系统模型建立

首先,MPC需要一个离散时间的系统模型来描述系统状态随时间的演变。对于线性系统,状态方程可以表示为:

x_{t+1}=Ax_{t}+Bu_{t}+w_{t}

这里:

  • x_{t}\in \mathbb{R}^{n} 是在时间步 t 的系统状态向量。
  • A\in \mathbb{R}^{n\times n} 是状态转移矩阵。
  • B\in \mathbb{R}^{n\times m} 是控制分配矩阵。
  • u_{t}\in \mathbb{R}^{m} 是在时间步 t 的控制输入向量。
  • w_{t}\in \mathbb{R}^{n} 是过程噪声,通常假设为零均值的高斯白噪声。
2. 目标函数定义

MPC的目标是通过优化控制输入来最小化一个性能指标,该指标通常包括预测的跟踪误差和控制输入的平滑性。目标函数可以表示为:

J=\sum_{i=1}^{N_{p}} ( x_{t+i\mid t}-x_{ref,t+i} )^{T}Q( x_{t+i\mid t}-x_{ref,t+i} )+ \sum_{i=0}^{N_{p}-1} (u_{t+i\mid t}-u_{ref,t+i} )^{T}R(u_{t+i\mid t}-u_{ref,t+i} )+(x_{t+N_{p}\mid t}-x_{final})^{T} P(x_{t+N_{p}\mid t}-x_{final})

这里:

  • N_{p}​ 是预测时域的长度。
  • x_{ref,t+i} 是期望的状态轨迹。
  • u_{ref,t+i} 是期望的控制输入轨迹。
  • x_{final} 是期望的最终状态。
  • Q ,RP 是权重矩阵,用于平衡不同时间步和状态的重要性,Q 和 P 通常是对角矩阵,而 R 可以是标量或者对角矩阵。
3. 预测机制

在每个控制步骤,基于当前状态 x_{t+i-1\mid t}​ 和一系列预测的控制输入 u_{t+i-1\mid t} ,MPC 进行状态预测。预测的递推公式如下:

x_{t+i\mid t}=Ax_{t+i-1\mid t}+Bu_{t+i-1\mid t}+w_{t+i-1\mid t}

这里 w_{t+i-1\mid t}​ 通常假设为零均值的预测噪声。

4. 优化问题的构建

MPC通过求解一个有限时间范围内的优化问题来找到最优的控制序列。优化问题的目标是最小化目标函数 J,同时受到系统动力学和可能的物理、操作约束的限制。

可能的约束:

g(x_{t+i \mid t},u_{t+i \mid t} )\leq 0

h(x_{t+i \mid t},u_{t+i \mid t} )=0

约束 gh 表示系统可能受到的物理或其他类型的限制。

 5.迭代计算过程
  • 初始化:在初始时刻 t=0,收集系统当前状态 x_{0}​。

  • 预测:基于当前状态 x_{t} 和一系列预测控制输入 u_{t\mid t}u_{t+1\mid t}\cdot \cdot \cdotu_{t+N_{p}-1\mid t},通过系统模型进行未来状态的预测。

  • 优化:构建并解决一个优化问题,目标是最小化目标函数 J,同时满足系统动力学和约束条件。

  • 实施:应用优化问题的解中的第一个控制输入 u_{t\mid t} 至系统。

  • 更新:在下一个时间步 t+1,收集系统新的状态 x_{t+1}​。

  • 重复:使用新的状态 x_{t+1} 重复步骤2到5。


 MPC应用案例

电子稳定控制系统(ESC)作为一项关键的汽车主动安全技术,通过实时监测车辆动态并自动调节以预防潜在的不稳定状况,对提升车辆的操控性和安全性发挥着至关重要的作用。在紧急避险操作或面对不利天气条件时,ESC的作用尤为显著。该系统中应用的模型预测控制(MPC)策略,依托于对车辆动态行为的数学建模,实现了对未来行为的预测及基于此的控制决策。MPC控制器综合考虑稳定性、牵引力和操控性等优化目标,计算出一系列控制指令,同时顾及轮胎摩擦极限和车辆动力学约束,确保了控制的精确性和及时性。

1.建立车辆动力学模型

首先,我们需要一个车辆动力学模型来描述车辆的运动,它包括以下方程:

  • 纵向动力学:描述车辆沿x轴的运动。 \dot{v}=a 其中,v 是车速,a 是车辆的纵向加速度。

  • 横向动力学:描述车辆沿y轴的运动。 \dot{y}=vsin(\theta )+v\delta \frac{cos(\theta )}{L} 其中,y 是车辆在y轴的位置,\theta 是车辆的航向角,\delta 是转向角,L 是车辆的轴距。

  • 角速度:描述车辆绕垂直轴的旋转。 \dot{\theta }=\frac{v}{L}tan(\delta )

2. 目标函数

MPC的目标是优化控制输入以最小化车辆与期望轨迹之间的偏差,并考虑控制输入的平滑性。目标函数可能如下所示:

J=\sum_{i=0}^{N-1}w_{p}(e_{x,i}^{2}+e_{y,i}^{2})+w_{a}(u_{\delta ,i}^{2}+u_{a,i}^{2})

其中:

  • e_{x,i} 和 e_{y,i} 是车辆在第i步预测中与期望轨迹的横向和纵向偏差。
  • u_{\delta ,i} 和 u_{a,i}​ 是第i步预测中的转向角和加速度控制输入。
  • w_{p}​ 和 w_{a} 是权重系数,用于平衡轨迹跟踪误差和控制平滑性。
3. 约束条件

在MPC中,我们需要考虑物理和操作约束,例如:

  • 转向角限制: -\delta _{max}\leq u_{\delta ,i}\leq \delta _{max}

  • 加速度限制: -a_{max}\leq u_{a,i}\leq a_{max}

  • 车辆稳定性和轮胎摩擦限制等。

4. 离散化和滚动时域

将连续时间模型离散化,以便在数字控制器中实现。离散化后的状态更新方程可能如下:

x_{k+1}=f(x_{k},u_{k},dt)

其中,x_{k}​ 是在时间步k的状态,u_{k}​ 是控制输入,dt 是离散化的时间步长。

MPC使用滚动时域方法,即在每个控制周期解决优化问题,然后只应用第一个控制输入,并在下一个时间步再次解决优化问题。

5. 求解优化问题

在每个控制周期,基于当前状态x_{k},求解以下优化问题:

min_{u_{i}}\sum_{i=0}^{N-1}J(x_{i},u_{i})

s.t. 

 x_{k+i}=f(x_{k},u_{i},dt)

g(x_{i},u_{i})\leq 0

h(x_{i},u_{i})= 0

其中,g 是不等式约束,h 是等式约束。

6. 实施控制

优化问题求解后,将第一个控制输入u_{k}​应用到车辆上,并在下一个控制周期重复上述过程。


 MPC代码

#include <iostream>
#include <vector>
#include <cmath>

// 定义车辆状态
struct VehicleState {
    double x; // 车辆在x轴的位置
    double y; // 车辆在y轴的位置
    double vx; // 车辆在x轴的速度
    double vy; // 车辆在y轴的速度
    double theta; // 车辆的航向角
    double v; // 车辆的速度
};

// 定义控制输入
struct ControlInput {
    double steering_angle; // 方向盘转角
    double acceleration; // 加速度
};

// 预测车辆状态
VehicleState predict_state(const VehicleState& current_state, const ControlInput& control_input) {
    VehicleState next_state;
    // 这里使用简单的运动学模型进行预测
    double dt = 0.1; // 假设的时间步长
    next_state.x = current_state.x + current_state.vx * cos(current_state.theta) * dt;
    next_state.y = current_state.y + current_state.vy * sin(current_state.theta) * dt;
    next_state.vx += control_input.acceleration * cos(current_state.theta) * dt;
    next_state.vy += control_input.acceleration * sin(current_state.theta) * dt;
    next_state.theta += (current_state.vx * sin(current_state.theta) - current_state.vy * cos(current_state.theta)) * dt;
    next_state.v = sqrt(current_state.vx * current_state.vx + current_state.vy * current_state.vy);
    return next_state;
}

// 目标函数,例如:最小化车辆偏离预定轨迹的距离
double objective_function(const std::vector<VehicleState>& predicted_states) {
    double cost = 0.0;
    // 这里只是一个示例,实际的MPC会涉及更复杂的目标函数
    for (const auto& state : predicted_states) {
        cost += state.x * state.x + state.y * state.y; // 简化的目标函数
    }
    return cost;
}

// 约束条件检查函数
bool check_constraints(const ControlInput& control_input) {
    // 检查控制输入是否满足约束条件,例如方向盘转角和加速度的范围
    const double max_steering_angle = 0.5; // 最大方向盘转角
    const double max_acceleration = 2.0; // 最大加速度
    return (control_input.steering_angle <= max_steering_angle && control_input.steering_angle >= -max_steering_angle) &&
           (control_input.acceleration <= max_acceleration && control_input.acceleration >= -max_acceleration);
}

// MPC求解函数
ControlInput mpc_solve(const VehicleState& current_state, const std::vector<VehicleState>& reference_trajectory) {
    ControlInput best_control;
    double min_cost = std::numeric_limits<double>::infinity();
    // 这里需要实现MPC的求解算法,包括预测、优化等步骤
    // 由于MPC求解通常比较复杂,这里只是一个框架示例

    // 示例:简单的启发式搜索
    for (double steering = -0.5; steering <= 0.5; steering += 0.1) {
        for (double acceleration = -2.0; acceleration <= 2.0; acceleration += 0.5) {
            ControlInput control_input = {steering, acceleration};
            if (check_constraints(control_input)) {
                VehicleState next_state = predict_state(current_state, control_input);
                std::vector<VehicleState> predicted_trajectory(10, next_state); // 预测10个时间步
                double cost = objective_function(predicted_trajectory);
                if (cost < min_cost) {
                    min_cost = cost;
                    best_control = control_input;
                }
            }
        }
    }

    return best_control;
}

int main() {
    // 假设的初始状态
    VehicleState initial_state = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0};

    // 控制周期循环
    for (int t = 0; t < 100; ++t) {
        ControlInput control = mpc_solve(initial_state, std::vector<VehicleState>{}); // 这里需要传入参考轨迹
        std::cout << "Time: " << t << ", Control: Steering=" << control.steering_angle << ", Acceleration=" << control.acceleration << std::endl;

        // 应用控制并更新状态
        // VehicleState next_state = predict_state(initial_state, control);
        // initial_state = next_state;
    }

    return 0;
}

  • 16
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值