概率论:随机变量之非离散变量

本文介绍了连续随机变量的基础概念,包括分布函数与概率密度函数及其性质,并详细探讨了几种重要的连续分布类型,如均匀分布、指数分布及正态分布。此外,还讨论了如何通过分布函数来处理非离散型变量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在讲非离散变量之前,先要讲讲分布函数:

相信你也发现了,这就是概率密度函数的积分。

分布函数有几条性质:

 有了分布函数这个工具以后,我们就可以学习连续的随机变量了。

概率密度就是分布函数的微分。

概率密度的性质没什么好说的,但有一条挺有意思:

可以理解为“区间”无限小,可能性就没有了。

接下来讲讲几种分布类型:

就是密度处处相等的意思。

指数分布有一个很有意思的特性:

正态分布:

 

还有标准正态分布:

注意,密度是小fai,分布是大fai。

普通的正态分布也可以变成标准的:

 因此,普通的正态分布也可以用查表的方式求出来了:

接下来就有了经典的3欧比噶法则:

这个3欧比噶相当于标准正态分布的3.

接下来就要学X的函数的性质了:

那很多变量是非离散的呀,怎么办?:

也就是说,求的时候从分布函数入手,因为分布函数可以直接转换,和刚刚的正态分布有点像。

 我们特别地拿正态分布举个例子:

刚刚的普通正态分布变成标准正态分布其实就是一个特殊例子。

于是我们有了一些结论:

真的吗?我觉得直接写更快呀。数学问题嘛。

这个也很好证。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值