TensorFlow深度学习实战——情感分析模型
0. 前言
情感分析 (Sentiment Analysis
) 是一种自然语言处理 (Natural Language Processing
, NLP
) 技术,旨在分析和识别文本中的情感倾向,情感分析模型能够根据情感倾向对文本进行分类。在本节中,我们将实现基于全连接神经网络的情感分析模型,以进一步熟悉神经网络构建流程。
1. IMDB 数据集
使用 IMDB
数据集构建情感分析模型。IMDB
数据集包含了来自互联网电影数据库的 50,000
条电影评论文本,每条评论都标记为正面或负面。数据集中 25,000
条评论用于训练、25,000
条用于测试。
目标是构建一个分类器,能够根据文本预测评论是正面还是负面。可以通过 tf.keras
加载 IMDB
数据集,评论中的单词序列已经转换为整数序列,其中每个整数代表字典中的一个特定单词。此外,我们还需要将句子填充到最大长度 max_len
,以便将所有句子(无论短长) 作为输入