n行Python代码系列:五行代码实现两个视频画中画播放

☞ ░ 老猿Python博文目录:https://blog.csdn.net/LaoYuanPython

在这里插入图片描述

一、引言

最近看到好几篇类似“n行Python代码…”的博文,看起来还挺不错,简洁、实用,传播了知识、带来了阅读量,撩动了老猿的心,决定跟风一把,推一个“n行Python代码系列”文章。

本文介绍将两视频合并成一个画中画模式播放视频5行代码的极简实现。后续更多“n行Python代码系列”文章请参考免费专栏《n行Python代码系列》。

二、五行代码实现两个视频同屏播放

from  moviepy.editor import *

clip1 = VideoFileClip(r"F:\video\fansNote1M_crop.mp4")
size = (int(clip1.size[0]/40.0)*10,int(clip1.size[1]/40.0)*10)
clip2 = VideoFileClip(r"F:\video\WinBasedWorkHard_crop.mp4").resize(size).set_position((clip1.size[0]-size[0],0))
CompositeVideoClip([clip1,clip2]).write_videofile(r'f:\video\pip.mp4')

上面5行代码先加载moviepy模块、然后加载第一个作为大屏的视频、计算画中画视频的大小(按大屏视频的1/5)、加装第二个作为小屏的视频同时调整到小屏的尺寸并设定其位置,再进行视频合成和输出。

视频效果:

三、背景知识

3.1、moviepy介绍

要实现视频剪辑,老猿使用了moviepy库。

MoviePy是一个用于视频编辑的Python模块,可用于进行视频的基本操作(如剪切、连接、标题插入)、视频合成(也称非线性编辑)、视频处理或创建高级效果。

它可以读写最常见的视频格式,包括GIF。MoviePy能处理的视频是ffmpeg格式的,老猿理解支持的文件类型至少包括:*.mp4 *.wmv *.rm *.avi *.flv *.webm *.wav *rmvb。

MoviePy安装非常简单,使用pip安装时,请将站点指向国内的镜像站点,否则下载很慢或者下载不下来,老猿使用清华的镜像,指令是:

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple moviepy

关于Moviepy更多的介绍,请参考老猿的免费专栏《PyQt+moviepy音视频剪辑实战》。

3.2、相关函数

上述代码涉及到的相关函数包括VideoFileClip、resize、set_position、CompositeVideoClip和write_videofile。VideoFileClip、write_videofile前面的博文已经介绍,在此就不重复介绍了。

3.2.1、resize函数

resize函数用于调整剪辑的大小,包括缩小或放大。
调用语法:
resize(clip, newsize=None, height=None, width=None, apply_to_mask=True)
说明:

  • 使用resize必须先安装了OpenCV、Scipy或PIL图像处理模块中的一个,否则不能使用
  • newsize可以是返回新剪辑的宽和高二元组,也可以是大小变化的比例如0.5或2,还可以是一个和剪辑帧时间t相关的函数来返回前面2种值中的一个
  • width、height:剪辑的宽或高,二者指定一个,另一个会自动计算
3.2.2、set_position函数

set_position方法用于多个剪辑合成一个剪辑时设置调用剪辑实例的拷贝在合成剪辑的位置。
调用语法:
set_position(self, pos, relative=False)
语法说明:

  • pos:剪辑需要放置的位置,可以是如下方式取值:
    √ (x,y):x,y用于指定剪辑左上角在合成剪辑的坐标位置
    √ (“center”,“top”):设定水平居中,垂直位置到顶部,类似的设置还有’bottom’、‘right’、‘left’
    √ (factorX,factorY):基于剪辑的大小设置相对位置, factorX和factorY为(0,1)之间的浮点数,计算位置时是以factorX乘以剪辑的宽,factorY乘以剪辑的高来计算位置,这里剪辑的宽和高是老猿认为应该是最终生成剪辑的宽和高
    √ x和y的=的值可以是前三种的组合,x和y可以用不同的方式来设置
    √ f(t)->(x,y):为一个通过时间计算该时刻指定剪辑左上角在合成剪辑的坐标位置
  • relative:是否相对位置,如果pos使用factorX或factorY时,relative需要设置为True
3.2.3、CompositeVideoClip函数

CompositeVideoClip其实是一个类,它是一种由其他视频剪辑组合构成一起播放的视频剪辑,是大多数合成剪辑的基类。
CompositeVideoClip构造方法:
__init__(self, clips, size=None, bg_color=None, use_bgclip=False,ismask=False)

语法说明

  • clips:多个视频剪辑的列表,列表中的每个元素都是VideoClip类型的对象。列表中的每个剪辑都将显示在列表中其后面出现的剪辑的下面。每个剪辑的pos属性决定剪辑放置在最终合成剪辑屏幕的位置,每个剪辑的mask遮罩属性决定每个剪辑哪部分可见哪部分不可见
  • size:最终剪辑的大小(分辨率),如果size为None,则将clips中第一个剪辑的size作为最终剪辑的size
  • bg_color:设置合成剪辑的背景色,背景色用于剪辑未填充且无遮罩的区域,如果要一个透明剪辑,则设置为None,否则为一个代表RGB颜色的三元组,如(0,0,0)代表黑色,也即透明色。该参数只有use_bgclip为False的情况下使用,实际上是通过构建一个由bg_color指定颜色的ColorClip来实现的
  • use_bgclip:如果列表中的第一个剪辑应用作所有其他剪辑的“背景”,则设置为True。第一个剪辑的大小必须与最后合成剪辑的大小相同。如果没有透明度,则最终剪辑将没有遮罩
  • ismask:最终合成剪辑是否为遮罩剪辑。

四、小结

本文介绍了使用Python+Moviepy五行代码实现两个视频文件合并成一个画中画播放视频的方法,并介绍了moviepy的功能及安装以及相关处理的关键函数及语法。

更多相关moviepy知识的介绍请参考https://blog.csdn.net/LaoYuanPython/article/details/108184832 Python音视频剪辑库MoviePy1.0.3中文教程导览及可执行工具下载》的导览式介绍。

写博不易,敬请支持:

如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!

如对文章内容存在疑问,可在博客评论区留言,或关注:老猿Python 微信公号发消息咨询。

关于老猿的付费专栏

  1. 付费专栏《https://blog.csdn.net/laoyuanpython/category_9607725.html 使用PyQt开发图形界面Python应用》专门介绍基于Python的PyQt图形界面开发基础教程,对应文章目录为《 https://blog.csdn.net/LaoYuanPython/article/details/107580932 使用PyQt开发图形界面Python应用专栏目录》;
  2. 付费专栏《https://blog.csdn.net/laoyuanpython/category_10232926.html moviepy音视频开发专栏 )详细介绍moviepy音视频剪辑合成处理的类相关方法及使用相关方法进行相关剪辑合成场景的处理,对应文章目录为《https://blog.csdn.net/LaoYuanPython/article/details/107574583 moviepy音视频开发专栏文章目录》;
  3. 付费专栏《https://blog.csdn.net/laoyuanpython/category_10581071.html OpenCV-Python初学者疑难问题集》为《https://blog.csdn.net/laoyuanpython/category_9979286.html OpenCV-Python图形图像处理 》的伴生专栏,是笔者对OpenCV-Python图形图像处理学习中遇到的一些问题个人感悟的整合,相关资料基本上都是老猿反复研究的成果,有助于OpenCV-Python初学者比较深入地理解OpenCV,对应文章目录为《https://blog.csdn.net/LaoYuanPython/article/details/109713407 OpenCV-Python初学者疑难问题集专栏目录
  4. 付费专栏《https://blog.csdn.net/laoyuanpython/category_10762553.html Python爬虫入门 》站在一个互联网前端开发小白的角度介绍爬虫开发应知应会内容,包括爬虫入门的基础知识,以及爬取CSDN文章信息、博主信息、给文章点赞、评论等实战内容。

前两个专栏都适合有一定Python基础但无相关知识的小白读者学习,第三个专栏请大家结合《https://blog.csdn.net/laoyuanpython/category_9979286.html OpenCV-Python图形图像处理 》的学习使用。

对于缺乏Python基础的同仁,可以通过老猿的免费专栏《https://blog.csdn.net/laoyuanpython/category_9831699.html 专栏:Python基础教程目录)从零开始学习Python。

如果有兴趣也愿意支持老猿的读者,欢迎购买付费专栏。

如对文章内容存在疑问,可在博客评论区留言,或关注:老猿Python 微信公号发消息咨询。
在这里插入图片描述

老猿Python,跟老猿学Python!

☞ ░ 前往老猿Python博文目录 https://blog.csdn.net/LaoYuanPython

LaoYuanPython CSDN认证博客专家 Python专家 CSDN博客专家 博客之星季军
侥幸获得CSDN 2020博客之星季军,博客主要聚焦Python相关知识,包括Python、爬虫、PyQt图形界面开发、Moviepy音视频剪辑、OpenCV图形图像处理等方向,内容都是老猿零基础学习相关知识的总结,许多内容是深入研究、测试甚至源码分析后的成果,在官网和网上都没有。有独特之见的专栏主要包括PyQt、Moviepy、Python、OpenCV相关专栏,特别是PyQt、Moviepy以及OpenCV疑难问题相关的付费专栏。另外博客内容还涉及5G、区块链和人工智能数学基础等非Python领域。欢迎大家批评指正!

如有疑问,请在 老猿Python 微信公号提问。谢谢!
已标记关键词 清除标记
相关推荐
Statistical learning refers to a set of tools for modeling and understanding complex datasets. It is a recently developed area in statistics and blends with parallel developments in computer science and, in particular, machine learning. The field encompasses many methods such as the lasso and sparse regression, classification and regression trees, and boosting and support vector machines. With the explosion of “Big Data” problems, statistical learning has be- come a very hot field in many scientific areas as well as marketing, finance, and other business disciplines. People with statistical learning skills are in high demand. One of the first books in this area—The Elements of Statistical Learning (ESL) (Hastie, Tibshirani, and Friedman)—was published in 2001, with a second edition in 2009. ESL has become a popular text not only in statis- tics but also in related fields. One of the reasons for ESL’s popularity is its relatively accessible style. But ESL is intended for individuals with ad- vanced training in the mathematical sciences. An Introduction to Statistical Learning (ISL) arose from the perceived need for a broader and less tech- nical treatment of these topics. In this new book, we cover many of the same topics as ESL, but we concentrate more on the applications of the methods and less on the mathematical details. We have created labs illus- trating how to implement each of the statistical learning methods using the popular statistical software package R . These labs provide the reader with valuable hands-on experience.
©️2020 CSDN 皮肤主题: 酷酷鲨 设计师:CSDN官方博客 返回首页
实付 29.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值