[笔记] Convex Optimization 2015.10.21

int(K) : interior of K

  • Definition: Cone K is proper if it is closed, convex, pointed (contains no line), solid (nonempty interior)
    If K is proper, then K is proper, K={λ:λTx0xK}

    • Fact1: xkyλTxλTyλs.t.λK0
    • Proof: xkyxyKbecauseK=KλT(xy)0λK
    • Lemma: Let K be proper, then xint(K) if and only if λTx>0λK{0}
    • Proof: If xint(K) then obviously λTx0 for all λK{0} .
      If λK{0} and λTx=0 then there exists uRn such that λTu<0 , and x+tuK for t sufficiently small, a contradiction.
      Next, assume that λTx>0 for all λK{0} .
      Then xK=K , so xK .
      If xint(K) then (xi)i=1Ks.t.limixi=x .
      Since xiK , λiKs.t.λTixi<0 (for all i ).
      WLOG λis are unit vectors.
      Then {λi:iN} lives inside a compact set (the unit ball of Rn ).
      So we can assume WLOG that λ1,λ2, is convergent: limiλi=λ .
      Then λK because K is closed and limi(λTxλTixi)=limi(λTxλTix)+limi(λTixλTixi)=0+0=0 .
      … contradiction!
      QED.
    • Fact2: xkyλTx>λTyλK{0}
    • Proof: xkyxyint(K)by lemmaλT(xy)>0λK{0}
    • Convex Functions:
      - A function f:RnR is convex if and only if domf is convex and f(θx+(1θ)y)θf(x)+(1θ)f(y) for all x,ydomf and all 0<θ<1 .
      - f:RnR is convex if and only if epi(f)Rn+1={(x,t):xdomf,tf(x)} is convex.

      • Example: f(x)=max(x1,,xn) is convex.
      • Proof: max(θx+(1θ)y)=maxi[θxi+(1θ)yi]θmaxixi+(1θ)maxjyj=θmax(x)+(1θ)max(y)

      • Observation: f is convex iff the restriction of f to every line is convex.
        Namely, f is convex if and only if the function g(t)=f(x+tu) from R to R is convex for every xdomf and uRn .

      • Derivatives: A function f:RnRm is differentiable at a point xint(domf) if and only if there exists a matrix "Df(x)"Rm×n such that f(x+z)=f(x)+Df(x)z+err(z) where limz0err(z)z2=0
        (Namely, limz0f(x+z)f(z)Df(x)zz2=0 )

      • Proposition: The derivative, if it exists, is unique.

      • Proof: Assume that A,BRm×n both satisfy the conditions of the derivative and that AB
        Snce AB there exists some vector uRns.t.AuBu , WLOG u is a unit vector.
        Then 0=limt0f(x+tu)f(x+tu)tu2=limt0f(x)+Atu+errA(tu)f(x)BtuerrB(tu)tu2=(AB)u+limt0errA(tu)errB(tu)tu2=(AB)u0

      • Example: Let f(x)=qTx+c for qRn,cR
        Then Df(x)=qT is the derivative.

      • Example 2: Let f(x)=xTPx for PSn
        Have f(x+z)f(x)=(xT+zT)P(x+z)xTPx=zTPx+xTPz+zTPz=2xTPz+zTPz
        so will have Df(x)=2xTP if we can show limz0zTPz2z2=0
        zTPz2z2Pz2z2P2z2

      • Example: Let f:Sn++R be defined by f(X)=log(detX) , ZSn

        f(X+Z)f(x)========logdet(X+Z)logdetXlogdet(X(I+X1Z))logdetXlogdetX+logdet(I+X1Z)logdetX(Let I=QQT,X1Z=Qdiag(λ1,cdots,λn)QT)logi=1n(1+λi)i=1nlog(1+λi)i=1nλi+o(λi)tr(X1Z)X1,Z

      tr(BTA)=B,A

      Second derivative (for functions of range R , m = 1)
      f:RnR,Df(x)=f(x)T,D(Df(x)T)=D(f(x))Rn×n
      f(x)=[fx1,,fxn]T
      D(f(x))=2fx212fxnx12fx1xn2fx2n=2f′′(x)
      means the Hessian of f .
      f=f1fm
      Df=f1x1fmx1f1xnfmxn

      First order condition for convexities
      - Fact: Assume f:RnR is differentiable (This means domf is open.)
      Then f is convex iff domf is convex and f(y)f(x)+Df(x)(yx) for all x,ydomf
      - Proof: Let x,ydomf , 0<θ<1 , z=θx+(1θ)y
      We have, by f(y)f(x)+Df(x)(yx) ,
      f(x)f(z)+Df(z)(xz) , f(y)f(z)+Df(z)(yz)
      so θf(x)+(1θ)f(y)f(z)+θDf(z)x+(1θ)Df(z)yDf(z)z=f(z)convex
      Fix x,ydomf and xy , Let g(t)=f(x+t(yx))=f(ty+(1t)x)
      Then g(t)tf(y)+(1t)f(x) by convexity (for t[0,1] )
      so f(x+t(yx))+(1t)f(x)tf(y)f(x+t(yx))f(x)t+f(x)f(y)
      limt0Df(x)(t(yx))+errx(t(yx))t+f(x)f(y)
      Df(x)(yx)+limt0errx(t(yx))t+f(x)f(y)
      f(y)Df(x)(yx)+f(x)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值