从控制角度分析体重的变化趋势和控制策略。
将该实例作为一个项目来看,思考如何介绍内容,展开分析。
1.数学模型 matlab/simulink
热量的净输入
7000kcal ≈ 1kg——燃烧7000k卡可以瘦2斤
得到一微分方程:
——————————
————————
将P代入微分方程,得
得
做Laplace,得
则传递函数为
框图为
也就是说,体重会趋于一个稳定值。
具体分析 matlab/simulink
1.搜索transfer function——选择varing transfer function
b0=1/7000
2. 拿常数方块去填数字,例如
3.点击小箭头,
里边双击中间,
70,体重。
4.输入
因为
所以设置这几个方块
5.中,搜索function,用Fcn
再找一个Mus
6.编辑Fcn
7.在输出加上一个scope
整体👇
问题来了,如果我们想维持体重、控制体重,我们如何建立一个反馈系统来控制体重加到一个目标值,达到一个参考值呢?
2.比例控制
做Laplace,得传递函数
框图
(一个带有扰动的开环系统)
引入参考值 r (目标体重), r-m=e(误差)
根据误差e调整系统输入u,
加入这样一个控制器,则系统形成一个闭环
用
则,
得,该新的闭环系统的响应
判断M是否稳定?——只需判断该表达式的极点是否<0
进行Laplace逆变换,得m的时间函数
即极点P2决定稳定性
则
拿到matlab/simulink中
整体
其中,为扰动量的表达
发现系统产生了稳态误差
说明,比例控制器 不能满足我们的需求,需要寻找新的方法。
当Kp>-13时,系统可以稳定,那么Kp=-5时,对系统有什么意义呢?它依然能够稳定系统说明了什么呢?