【自动控制原理】燃烧卡路里_系统分析实例-笔记

本文通过建立体重变化的数学模型,利用MATLAB/Simulink进行模拟分析,探讨了热量平衡与体重的关系。通过比例控制理论,设计了一个闭环控制系统来维持或调整体重至目标值。然而,单纯的比例控制存在稳态误差,表明需要更复杂的控制策略来实现精确的体重控制。
摘要由CSDN通过智能技术生成

从控制角度分析体重的变化趋势和控制策略。

将该实例作为一个项目来看,思考如何介绍内容,展开分析。


1.数学模型 matlab/simulink

 热量的净输入

 7000kcal ≈ 1kg——燃烧7000k卡可以瘦2斤

得到一微分方程:

——————————

————————

将P代入微分方程,得

 

 

 得 

做Laplace,得

 则传递函数为

 框图为

 也就是说,体重会趋于一个稳定值。

具体分析 matlab/simulink

1.搜索transfer function——选择varing transfer function

 b0=1/7000

2. 拿常数方块去填数字,例如

 3.点击小箭头,

  里边双击中间,

  70,体重。

4.输入

因为

 所以设置这几个方块

 5.中,搜索function,用Fcn

 

再找一个Mus

 6.编辑Fcn

7.在输出加上一个scope

 整体👇 

 


问题来了,如果我们想维持体重、控制体重,我们如何建立一个反馈系统来控制体重加到一个目标值,达到一个参考值呢?


 2.比例控制

 做Laplace,得传递函数

 框图

 (一个带有扰动的开环系统)

 引入参考值 r (目标体重), r-m=e(误差)

根据误差e调整系统输入u,

 加入这样一个控制器,则系统形成一个闭环

用 

 则,

 得,该新的闭环系统的响应

 

判断M是否稳定?——只需判断该表达式的极点是否<0

 进行Laplace逆变换,得m的时间函数

 即极点P2决定稳定性

 拿到matlab/simulink中

 

 整体

 其中,为扰动量的表达

 发现系统产生了稳态误差

 说明,比例控制器 不能满足我们的需求,需要寻找新的方法。

 当Kp>-13时,系统可以稳定,那么Kp=-5时,对系统有什么意义呢?它依然能够稳定系统说明了什么呢?

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值