控制系统分析与设计(一):控制系统分类及建模

一.控制系统分类

从不同的角度有多种分类方法

  1. 随动系统(伺服系统):使输出复现输入 ,输入不确定(跟踪系统,如雷达);输入有规律变化(程序控制系统,如数控机床)
    自动调整系统(恒值系统):输入为定值,输出以一定精度保持在希望的数值上(如水箱水位)

  2. 线性系统:可以用线性常微分方程(连续系统)或差分方程(离散系统)表示,输入信号及其导数和输出信号及其导数都是一次方,如a0y(n)+a1y(n-1)+……+any=b0x(m)+b1x(m-1)+……+bmx;线性系统还分为线性定常系统和线性时变系统。
    线性定常系统满足齐次性和叠加性,即 f ( k × t ) = k × f ( t ) f(k×t)=k×f(t) f(k×t)=k×f(t)
    f ( t 1 + t 2 ) = f ( t 1 + t 2 ) f(t_1+t_2)=f(t_1+t_2) f(t1+t2)=f(t1+t2)
    线性时变系统则a0…an、b0…bn是时间的函数
    非线性系统:用非线性常微分方程表示

  3. 连续系统(微分方程):模拟量
    离散系统(差分方程):数字量、脉冲量

  4. 单输入单输出系统、多输入多输出系统

  5. 确定系统、不确定系统(结构、参数、输入信号)

二.控制系统的数学模型

数学模型:描述系统运动规律的数学表达式

1.数学模型描述方法:

  • 微分方程:标准形式是输出量在等号左边,输入量在等号右边,导数降阶排列
  • 传递函数:线性定常系统在初始条件为0的情况下,输出信号的拉氏变换与输入拉氏变换的比值 Y ( s ) X ( s ) \frac {Y(s)} {X(s)} X(s)Y(s)
    传递函数的特点:
    (1)只有线性系统才有此概念,一般是线性定常系统
    (2)传递函数是系统本身的性质,与输入输出无关,但可由输入输出描述
    (3)零初始条件 因为线性系统与初始条件无关,可以假设初始条件是0
  • 微分方程推广到高阶系统:

a 0 d n y ( t ) d t n + a 1 d n − 1 y ( t ) d t n − 1 + … … + a n y ( t ) = b 0 d m x ( t ) d t m + b 1 d m − 1 x ( t ) d t m − 1 + … … + b m x ( t ) a_0\frac {d^ny(t)}{dt^n}+a_1 \frac {d^{n-1}y(t)}{dt^{n-1}}+……+a_ny(t)=b_0\frac{d^mx(t)}{dt^m}+b_1\frac {d^{m-1}x(t)}{dt^{m-1}}+……+b_mx(t) a0dtndny(t)+a1dtn1dn1y(t)++any(t)=b0dtmdmx(t)+b1dtm1dm1x(t)++bmx(t)

  • 传递函数:
    G ( s ) = Y ( s ) X ( s ) = b 0 s m + b 1 s m − 1 + … … + b m a 0 s n + a 1 s n − 1 + … … + a n = M ( s ) N ( s ) G(s)=\frac{Y(s)}{X(s)}=\frac{b_0s^m+b_1s^{m-1}+……+b_m}{a_0s^n+a_1s^{n-1}+……+a_n}=\frac {M(s)}{N(s)} G(s)=X(s)Y(s)=a0sn+a1sn1++anb0sm+b1sm1++bm=N(s)M(s)
    G(s)的零点: M ( s ) = b 0 s m + b 1 s m − 1 + … … + b m = 0 M(s)=b_0s^m+b_1s^{m-1}+……+b_m=0 M(s)=b0sm+b1sm1++bm=0
    G(s)的极点(微分方程的特征根): N ( s ) = a 0 s n + a 1 s n − 1 + … … + a n = 0 N(s)=a_0s^n+a_1s^{n-1}+……+a_n=0 N(s)=a0sn+a1sn1++an=0
    传递函数还可以表示成零极点形式:
    在这里插入图片描述其中zi是零点,pj是极点
    也可以表示成时间常数形式:
    在这里插入图片描述

  • 脉冲响应函数:给系统输入一个脉冲信号,观察输出的时域响应

  • 状态方程:适用于多输入多输出系统

2.建立微分方程数学模型的步骤:

  • 确定输入信号、输出信号,并根据需要引入一些中间变量
  • 提出合乎实际的简化假设
  • 根据物理或化学定律,列出微分方程
  • 消去中间变量,求出系统的输入-输出微分方程

3.相关知识回忆:

  • 物理概念及公式
    阻尼是与振动速度大小成正比,与振动方向相反的力
    感抗: XL=2πfL
    容抗:XC= 1/(2πfC)
    电容两端的电压:UC=IXC
    电感两端的电压:UL=L×(dIL/dt)
    通过电容的电流(由C=Q / U求导而来):IC=C×(dUC/dt)

  • 拉氏变换:由时域变到频域,s是个复数
    L [ f ( t ) ] = ∫ 0 ∞ f ( t ) e − s t d t = F ( s )   , t < 0 , f ( t ) = 0 L[f(t)]= \int_0^\infty f(t)e^{-st}dt=F(s)\, ,t<0,f(t)=0 L[f(t)]=0f(t)estdt=F(s),t<0,f(t)=0

  • 几个简单函数的拉氏变换:
    (1)单位阶跃函数
    1 ( t ) = { 1 , t>=0 0 , t<0 1(t) = \begin{cases} 1, & \text{t>=0} \\ 0, & \text{t<0} \end{cases} 1(t)={1,0,t>=0t<0
    L [ 1 ( t ) ] = ∫ 0 ∞ e − s t d t = 1 s , s = σ + j ω , σ > 0 L[1(t)]= \int_0^\infty e^{-st}dt=\frac1{s},s=σ+j\omega ,σ>0 L[1(t)]=0estdt=s1,s=σ+jωσ>0
    (2)单位斜坡函数 t×1(t)
    L [ t × 1 ( t ) ] = ∫ 0 ∞ t e − s t d t = 1 s 2 , s = σ + j ω , σ > 0 L[t×1(t)]= \int_0^\infty te^{-st}dt=\frac1{s^2},s=σ+j\omega ,σ>0 L[t×1(t)]=0testdt=s21,s=σ+jωσ>0
    (3)指数函数 e-αt
    L [ e − α t ] = ∫ 0 ∞ e − α t e − s t d t = 1 s + α , s = σ + j ω , σ > 0 L[ e^{-αt}]= \int_0^\infty e^{-αt}e^{-st}dt=\frac1{s+α},s=σ+j\omega ,σ>0 L[eαt]=0eαtestdt=s+α1,s=σ+jωσ>0
    (4)余弦函数 c o s ω t = e j ω t + e − j ω t 2 cos\omega t=\frac{e^{j\omega t}+e^{-j\omega t}}{2} cosωt=2ejωt+ejωt
    由已知 e j ω t = c o s ω t + j s i n ω t e^{j\omega t}=cos\omega t+jsin\omega t ejωt=cosωt+jsinωt
    e − j ω t = c o s ω t − j s i n ω t e^{-j\omega t}=cos\omega t-jsin\omega t ejωt=cosωtjsinωt
    将余弦函数转换成两个指数函数的和
    L [ c o s ω t ] = ∫ 0 ∞ c o s ω t × e − s t d t = 1 2 ( ∫ 0 ∞ e ( j ω − s ) t d t + ∫ 0 ∞ e ( − j ω − s ) t d t ) = 1 2 ( − 1 j ω − s − 1 − j ω − s ) = s s 2 + ω 2 L[cos\omega t]=\int_0^\infty cos\omega t×e^{-st}dt=\frac1{2}(\int_0^\infty e^{(j\omega-s)t}dt+\int_0^\infty e^{(-j\omega-s)t} dt) =\frac1{2}(-\frac1{j\omega -s}-\frac1{-j\omega-s})=\frac s{s^2+\omega^2} L[cosωt]=0cosωt×estdt=21(0e(jωs)tdt+0e(jωs)tdt)=21(jωs1jωs1)=s2+ω2s
    同理正弦函数的拉氏变换: L [ s i n ω t ] = ω s 2 + ω 2 L[sin\omega t]=\frac \omega{s^2+\omega^2} L[sinωt]=s2+ω2ω

  • 拉氏变换的一些性质
    (1)线性性
    L [ k ∗ f ( t ) ] = k ∗ L [ f ( t ) ] = k ∗ F ( s ) L[k*f(t)]=k*L[f(t)]=k*F(s) L[kf(t)]=kL[f(t)]=kF(s)
    (2)叠加性
    L [ f 1 ( t ) ± f 2 ( t ) ] = L [ f 1 ( t ) ] ± L [ f 2 ( t ) ] = F 1 ( s ) ± F 2 ( s ) L[f_1(t)\pm f_2(t)]=L[f_1(t)]\pm L[f_2(t)]=F_1(s)\pm F_2(s) L[f1(t)±f2(t)]=L[f1(t)]±L[f2(t)]=F1(s)±F2(s)
    (3)微分性质
    L [ d d t f ( t ) ] = s F ( s ) − f ( 0 + ) L[\frac d{dt}f(t)]=sF(s)-f(0^+) L[dtdf(t)]=sF(s)f(0+)
    L [ d 2 d t 2 f ( t ) ] = s 2 F ( s ) − s f ( 0 + ) − f ′ ( 0 + ) L[\frac {d^2}{dt^2}f(t)]=s^2F(s)-sf(0^+)-f^\prime(0^+) L[dt2d2f(t)]=s2F(s)sf(0+)f(0+)
    L [ d n d t n f ( t ) ] = s n F ( s ) − s n − 1 f ( 0 + ) − s n − 2 f ′ ( 0 + ) − … … − s f ( n − 2 ) ( 0 ) − f ( n − 1 ) ( 0 ) L[\frac {d^n}{dt^n}f(t)]=s^nF(s)-s^{n-1}f(0^+)-s^{n-2}f^\prime(0^+)-……-sf^{(n-2)}(0)-f^{(n-1)}(0) L[dtndnf(t)]=snF(s)sn1f(0+)sn2f(0+)sf(n2)(0)f(n1)(0)
    求传递函数是零初始条件,因此后边各项均为0,仅剩第一项
    (4)积分性质
    L [ ∫ 0 t f ( τ ) d τ ] = F ( s ) s L[\int_0^tf(\tau)d\tau]=\frac{F(s)}{s} L[0tf(τ)dτ]=sF(s)
    L [ ∫ 0 t … … ∫ 0 t f ( t ) ( d t ) n ] = F ( s ) s n L[\int_0^t……\int_0^tf(t)(dt)^n]=\frac{F(s)}{s^n} L[0t0tf(t)(dt)n]=snF(s)
    (5)时间平移
    相当于将f(t)移动了一段距离,其中 t ≥ a t\geq a ta
    L [ f ( t − a ) ∗ 1 ( t − a ) ] = e − a s F ( s ) L[f(t-a)*1(t-a)]=e^{-as}F(s) L[f(ta)1(ta)]=easF(s)
    (6)复位移
    L [ e ∓ α t f ( t ) ] = F ( s ± α ) L[e^{\mp \alpha t}f(t)]=F(s\pm \alpha) L[eαtf(t)]=F(s±α)
    (7)初值定理
    lim ⁡ t → 0 f ( t ) = lim ⁡ s → ∞ s F ( s ) \lim_{t \to 0} f(t)=\lim_{s \to \infty}sF(s) t0limf(t)=slimsF(s)
    (8)终值定理
    lim ⁡ s → 0 s F ( s ) = lim ⁡ t → ∞ f ( t ) \lim_{s \to 0}sF(s)=\lim_{t \to \infty}f(t) s0limsF(s)=tlimf(t)
    使用条件:sF(s)在虚轴(除原点)及其右半平面上没有极点
    极点:使F(s)分母为0的s值
    例如, L [ s i n ω t ] = ω s 2 + ω 2 L[sin\omega t]=\frac \omega{s^2+\omega^2} L[sinωt]=s2+ω2ω其极点为 s = ± j ω s=\pm j\omega s=±jω此时s是虚数,在虚轴上有极点,就不能使用终值定理。另外极限 lim ⁡ t → ∞ s i n ω t \lim_{t \to \infty}sin\omega t tlimsinωt不存在,而 lim ⁡ s → 0 s F ( s ) = 0 \lim_{s \to 0}sF(s)=0 s0limsF(s)=0因此终值定理此时不成立。
    (9)实数卷积
    F 1 ( s ) ∗ F 2 ( s ) = L [ ∫ 0 t f 1 ( τ ) ∗ f 2 ( t − τ ) d τ ] = L [ ∫ 0 t f 2 ( τ ) ∗ f 1 ( t − τ ) d τ ] = L [ f 1 ( t ) ∗ f 2 ( t ) ] F_1(s)*F_2(s)=L[\int_0^tf_1(\tau)*f_2(t-\tau)d\tau]=L[\int_0^tf_2(\tau)*f_1(t-\tau)d\tau]=L[f_1(t)*f_2(t)] F1(s)F2(s)=L[0tf1(τ)f2(tτ)dτ]=L[0tf2(τ)f1(tτ)dτ]=L[f1(t)f2(t)]
    两个时间函数卷积的拉氏变换等于拉氏变换的乘积

  • 常用拉氏变换(要求记忆)
    (1)脉冲信号
    L [ δ ( t ) ] = 1 L[\delta(t)]=1 L[δ(t)]=1
    (2)单位阶跃信号
    L [ 1 ( t ) ] = 1 s L[1(t)]=\frac 1{s} L[1(t)]=s1
    (3)单位斜坡函数
    L [ t ] = 1 s 2 L[t]=\frac 1{s^2} L[t]=s21
    (4) L [ 1 2 t 2 ] = 1 s 3 L[\frac 1{2}t^2] =\frac 1{s^3} L[21t2]=s31
    L [ t n n ! ] = 1 s n + 1 L[\frac {t^n}{n!}] =\frac 1{s^{n+1}} L[n!tn]=sn+11
    (5) L [ e − α t ] = 1 s + α L[e^{-\alpha t}]=\frac 1{s+\alpha} L[eαt]=s+α1
    L [ t e − α t ] = 1 ( s + α ) 2 L[te^{-\alpha t}]=\frac 1{(s+\alpha)^2} L[teαt]=(s+α)21
    (6) f ( t ) = e − α t s i n ω t f(t)=e^{-\alpha t}sin\omega t f(t)=eαtsinωt
    由正弦函数的拉氏变换、复位移性质得
    L [ e − α t s i n ω t ] = ω ( s + α 2 ) + ω 2 L[e^{-\alpha t}sin\omega t]=\frac \omega{(s+\alpha^2)+\omega^2} L[eαtsinωt]=(s+α2)+ω2ω

  • 线性系统输入输出传递函数描述举例
    在这里插入图片描述

弹簧阻尼系统列出微分方程:
m d 2 y ( t ) d t 2 + f d y ( t ) d t + k y ( t ) = F ( t ) m\frac {d^2y(t)}{dt^2}+f\frac{dy(t)}{dt}+ky(t)=F(t) mdt2d2y(t)+fdtdy(t)+ky(t)=F(t)
左右两边同时作拉氏变换:
m [ s 2 Y ( s ) − s y ( 0 ) − y ′ ( 0 ) ] + f [ s Y ( s ) − y ( 0 ) ] + k Y ( s ) = F ( s ) m[s^{2}Y(s)-sy(0)-y^{'}(0)]+f[sY(s)-y(0)]+kY(s)=F(s) m[s2Y(s)sy(0)y(0)]+f[sY(s)y(0)]+kY(s)=F(s)
假设初始条件为0, m s 2 Y ( s ) + f s Y ( s ) + k Y ( s ) = F ( s ) ms^2Y(s)+fsY(s)+kY(s)=F(s) ms2Y(s)+fsY(s)+kY(s)=F(s)
则传递函数为 G ( s ) = Y ( s ) F ( s ) = 1 m s 2 + f s + k G(s)=\frac {Y(s)}{F(s)}=\frac 1{ms^2+fs+k} G(s)=F(s)Y(s)=ms2+fs+k1

  • 复数阻抗
    Z R = R , Z C = 1 C s , Z L = L s Z_R=R,Z_C=\frac 1{Cs},Z_L=Ls ZR=R,ZC=Cs1,ZL=Ls
    (1)电阻
    u ( t ) = i ( t ) R u(t)=i(t)R u(t)=i(t)R
    U ( s ) = I ( s ) R U(s)=I(s)R U(s)=I(s)R
    G R ( s ) = U ( s ) I ( s ) = R G_R(s)=\frac {U(s)}{I(s)}=R GR(s)=I(s)U(s)=R
    (2)电容
    u ( t ) = 1 C ∫ i ( t ) d t u(t)=\frac 1{C} \int i(t)dt u(t)=C1i(t)dt
    U ( s ) = I ( s ) 1 C s U(s)=I(s)\frac 1{Cs} U(s)=I(s)Cs1
    G C ( s ) = U ( s ) I ( s ) = 1 C s G_C(s)=\frac {U(s)}{I(s)}=\frac 1{Cs} GC(s)=I(s)U(s)=Cs1
    (3)电感
    u ( t ) = L d i ( t ) d t u(t)=L\frac {di(t)}{dt} u(t)=Ldtdi(t)
    U ( s ) = I ( s ) L s U(s)=I(s)Ls U(s)=I(s)Ls
    G L ( s ) = U ( s ) I ( s ) = L s G_L(s)=\frac{U(s)}{I(s)}=Ls GL(s)=I(s)U(s)=Ls
    用复阻抗求传递函数就比较容易了,复阻抗的串并联等同于电阻的串并联。
  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值