单细胞RNA测序(scRNA-seq)Seurat分析流程入门

本文介绍了使用Seurat进行单细胞RNA测序数据分析的流程,包括数据准备、预处理、标准化、均一化、降维、聚类和细胞类型注释。内容涵盖PMBC数据下载、R包安装、细胞质控、PCA和UMAP/tSNE可视化、差异基因分析等关键步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

单细胞RNA测序(scRNA-seq)基础可查内容看以下文章:

单细胞RNA测序(scRNA-seq)工作流程入门

单细胞RNA测序(scRNA-seq)细胞分离与扩增

单细胞RNA测序(scRNA-seq)SRA数据下载及fastq-dumq数据拆分

单细胞RNA测序(scRNA-seq)Cellranger流程入门和数据质控

单细胞RNA测序(scRNA-seq)构建人类参考基因组注释

单细胞RNA测序(scRNA-seq)cellranger count的细胞定量和aggr整合

Seurat分析流程入门

1. 数据与R包准备

以下代码在RStudio中实现。

1.1 PMBC数据下载

下载2700个10X单细胞-外周血单核细胞(PBMC)数据集。

# Seurat_1.R
################### 1. 数据获取及读取 ###################
# 切换至工作目录
setwd("F:/scRNA-seq/Seurat4.0")

# 下载PMBC数据
download.file("https://cf.10xgenomics.com/samples/cell/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz", 
              destfile = "pbmc3k_filtered_gene_bc_matrices.tar.gz")

# 解压
untar(tarfile = "pbmc3k_filtered_gene_bc_matrices.tar.gz", exdir = "./")

# 查看当前目录文件
dir()
# [1] "filtered_gene_bc_matrices"     "pbmc3k_filtered_gene_bc_matrices.tar.gz"
# [3] "Seurat_1.R"

# 查看解压目录文件
dir("./filtered_gene_bc_matrices/hg19")
# [1] "barcodes.tsv" "genes.tsv"    "matrix.mtx"

1.2 分析R包安装

# 选择清华镜像安装
options("repos"=c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/"))
install.packages("BiocManager")

BiocManager::install("dplyr")
BiocManager::install("Seurat")
BiocManager::install("patchwork")
BiocManager::install("ggplot2")

2. 数据预处理

2.1 构建单细胞Seurat对象

Read10X函数读取,返回独特的分子识别(UMI)计数矩阵
矩阵中的行值表示每个功能(即基因)列值表示在每个细胞中检测到的分子数量

################### 2. 数据预处理 ###################
library(dplyr)
library(Seurat)
library(patchwork)

# 读取当前目录 2700个10X单细胞-外周血单核细胞(PBMC)数据集
pbmc.data <- Read10X(data.dir = "./filtered_gene_bc_matrices/hg19")

# 查看部分数据
pbmc.data[1:5, 1:3]
# 5 x 3 sparse Matrix of class "dgCMatrix"
# AAACATACAACCAC-1 AAACATTGAGCTAC-1 AAACATTGATCAGC-1
# MIR1302-10                  .                .                .
# FAM138A                     .                .                .
# OR4F5                       .                .                .
# RP11-34P13.7                .                .                .
# RP11-34P13.8                .                .                .


# 创建Seurat对象
# 每个基因至少在3个细胞中表达
# 每个细胞至少检测到200个基因
pbmc.obj <- CreateSeuratObject(counts = pbmc.data, 
                               project = "pbmc3k",
                               min.cell = 3,
                               min.features = 200)

pbmc.obj
# An object of class Seurat 
# 13714 features across 2700 samples within 1 assay 
# Active assay: RNA (13714 features, 0 variable features)
# 1 layer present: counts

# 细胞名称重命名
pbmc.obj <- RenameCells(pbmc.obj, add.cell.id = "PBMC")

2.2 单细胞数据质控

为分析得到高质量和可靠的单细胞数据,保证后续分析结果的准确度,通常会设置以下QC指标过滤细胞:

常见QC指标:

  1. 在每个细胞中检测到的基因数量
    低质量细胞或空液滴通常只有很少的基因; 细胞双倍或多胞可能表现出异常高的基因计数。

  2. 细胞内检测到的分子总数(与独特的基因密切相关)

  3. 细胞中的线粒体基因组的百分比
    低质量/死细胞经常表现出线粒体污染;使用PercentageFeatureSet()函数计算线粒体 QC 指标。

2.2.1 通过细胞counts数和feature数的分布确定过滤条件阈值

head(pbmc.obj@meta.data)
# orig.ident nCount_RNA nFeature_RNA percent.mt
# PBMC_AAACATACAACCAC-1     pbmc3k       2419          779  3.0177759
# PBMC_AAACATTGAGCTAC-1     pbmc3k       4903         1352  3.7935958
# PBMC_AAACATTGATCAGC-1     pbmc3k       3147         1129  0.8897363
# PBMC_AAACCGTGCTTCCG-1     pbmc3k       2639          960  1.7430845
# PBMC_AAACCGTGTATGCG-1     pbmc3k        980          521  1.2244898
# PBMC_AAACGCACTGGTAC-1     pbmc3k       2163          781  1.6643551

# 细胞counts数和feature数的分布
VlnPlot(pbmc.obj, features = c("nCount_RNA","nFeature_RNA"))

counts数和feature数的分布图

2.2.2 细胞线粒体基因和和核糖体基因含量获取

# 获取基因名以MT-开头的线粒体基因
pbmc.obj[["percent.mt"]] <- PercentageFeatureSet(pbmc.obj,
                                                 pattern = "^MT-")

head(pbmc.obj@meta.data, 5)
# orig.ident nCount_RNA nFeature_RNA percent.mt
# PBMC_AAACATACAACCAC
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生信与基因组学

每一份鼓励是我坚持下去动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值