✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
本文深入探讨了一种结合鲸鱼优化算法(WOA)与轻量级梯度提升机(LightGBM)的混合优化方法,用于提升分类预测的性能。该方法利用WOA的全局搜索能力,有效地优化LightGBM的关键超参数,从而避免了人工调参的盲目性,并提高了模型在特定数据集上的泛化能力和预测精度。文章详细阐述了WOA算法的原理、LightGBM算法的特性,以及两者结合的优化策略。此外,通过Matlab编程实现了该方法,并在公开数据集上进行了实验验证,结果表明该优化方法相较于传统的LightGBM模型具有明显的性能优势。
引言
随着大数据时代的到来,机器学习技术在各个领域得到了广泛应用,分类预测作为其中一项重要的任务,其性能直接影响着应用的成效。梯度提升机(Gradient Boosting Machine, GBM)作为一种强大的机器学习算法,在处理复杂分类问题时表现出卓越的性能。然而,GBM算法通常需要大量的计算资源和时间,且其超参数的调整对模型性能具有重要影响。为了解决这些问题,微软研究院提出了LightGBM,它采用基于直方图的决策树算法,显著提高了训练速度并降低了内存消耗,成为了一种更高效的GBM实现。
尽管LightGBM具有诸多优点,但其性能仍然受到超参数选择的制约。传统的手动调参或网格搜索等方法存在耗时、效率低下等问题,而智能优化算法则为解决这一问题提供了新的思路。鲸鱼优化算法(Whale Optimization Algorithm, WOA)作为一种新兴的元启发式算法,模拟座头鲸的狩猎行为,具有寻优能力强、收敛速度快等特点,能够有效地搜索全局最优解。
本文提出了一种基于WOA优化的LightGBM分类预测方法,即WOA-LightGBM。该方法首先利用WOA算法对LightGBM的超参数进行全局寻优,然后在优化后的超参数下训练LightGBM模型进行分类预测。通过Matlab实现了该方法,并在实验中验证了其有效性。
理论基础
2.1 LightGBM算法
LightGBM是一种高效的梯度提升框架,其核心思想是采用基于直方图的决策树算法。与传统的GBM算法相比,LightGBM具有以下优势:
-
基于直方图的决策树: 将连续特征值离散化为直方图,大大降低了特征值分割的计算量,提高了训练速度。
-
带深度限制的 Leaf-wise生长策略: 相较于 Level-wise生长策略,Leaf-wise策略能够生成更深、更复杂的树结构,从而提高模型的精度。
-
直接支持类别特征: LightGBM能够直接处理类别特征,无需进行独热编码等预处理操作。
-
高效并行训练: LightGBM支持特征并行和数据并行,能够充分利用多核CPU资源,进一步提高训练效率。
LightGBM的关键超参数包括但不限于:
-
n_estimators
: 决策树的数量。 -
learning_rate
: 学习率,用于控制模型对每次迭代的步长。 -
num_leaves
: 每个决策树的最大叶子节点数。 -
max_depth
: 决策树的最大深度。 -
min_child_samples
: 叶子节点中最小的样本数量。
2.2 鲸鱼优化算法(WOA)
鲸鱼优化算法是一种模拟座头鲸捕食行为的元启发式优化算法。该算法通过模拟座头鲸的搜索、包围和气泡网攻击等行为,实现全局寻优。
WOA主要包含以下几个步骤:
-
初始化: 随机生成一组鲸鱼个体,每个个体代表一个潜在的解。
-
包围猎物: 鲸鱼个体通过以下公式更新位置,模拟包围猎物行为:
ini
X(t+1) = X*(t) - A * D
D = |C * X*(t) - X(t)|
A = 2 * a * r1 - a
C = 2 * r2其中,
X(t)
表示当前迭代中鲸鱼个体的位置,X*(t)
表示当前最优解的位置,a
是线性递减的控制参数,r1
和r2
是[0,1]之间的随机数。 -
气泡网攻击: 模拟鲸鱼进行螺旋式捕食的行为,通过以下公式更新位置:
scss
X(t+1) = D' * exp(b * l) * cos(2 * pi * l) + X*(t)
D' = |X*(t) - X(t)|其中,
b
是控制螺旋形状的常数,l
是[-1, 1]之间的随机数。 -
搜索猎物: 鲸鱼个体根据概率随机选择包围猎物或气泡网攻击的策略,并根据以下公式更新位置:
scss
X(t+1) = Xrand - A * D
D = |C * Xrand - X(t)|其中,
Xrand
是随机选取的鲸鱼个体。 -
更新最优解: 每一轮迭代后,更新最优解,并判断是否达到停止条件。
3. WOA-LightGBM优化方法
WOA-LightGBM方法的核心思想是将LightGBM的超参数作为WOA算法的搜索空间,通过WOA算法迭代搜索最优的超参数组合,以提高LightGBM模型的分类预测性能。
3.1 编码方案
首先,需要将LightGBM的超参数映射到WOA算法的个体位置上。本文选取n_estimators
, learning_rate
, num_leaves
, max_depth
, min_child_samples
五个关键超参数作为优化目标。每个超参数的取值范围根据实际情况设定,例如n_estimators
通常在[100, 1000],learning_rate
在[0.001, 0.1],以此类推。
然后,将每个超参数映射到一个浮点数上,组成一个表示个体位置的向量。例如,一个长度为5的向量 [100, 0.01, 31, 5, 20]
,表示一个候选的LightGBM超参数组合。
3.2 适应度函数
适应度函数用于评估每个个体(即每个超参数组合)的优劣。本文选择使用交叉验证的平均分类准确率作为适应度函数。具体步骤如下:
-
将数据集划分为K份,进行K折交叉验证。
-
使用每个超参数组合,训练LightGBM模型,并在验证集上进行预测。
-
计算每次验证的准确率,并求平均值。
-
将平均准确率作为该超参数组合的适应度值。
3.3 WOA算法优化流程
-
初始化: 随机生成一组鲸鱼个体,每个个体代表一个潜在的LightGBM超参数组合。
-
迭代优化:
-
计算每个个体的适应度值。
-
根据当前最优个体,更新鲸鱼个体的位置。
-
更新当前最优解。
-
判断是否达到停止条件,如最大迭代次数或精度要求。
-
-
输出最优解: 输出找到的最佳超参数组合。
-
模型训练和预测: 使用最优超参数组合训练LightGBM模型,并在测试集上进行预测。
4. Matlab实现
本文使用Matlab实现了WOA-LightGBM优化算法,并给出了关键代码片段:
matlab
% LightGBM超参数范围
paramRange.n_estimators = [100, 1000];
paramRange.learning_rate = [0.001, 0.1];
paramRange.num_leaves = [31, 100];
paramRange.max_depth = [3, 10];
paramRange.min_child_samples = [10, 50];
% WOA参数
searchAgents_no = 30;
max_iter = 100;
% 定义目标函数(交叉验证)
obj_function = @(x) crossValAccuracy(x, X_train, y_train, paramRange);
% 运行WOA算法
[best_pos, best_score, convergence_curve] = WOA(searchAgents_no, max_iter, ...
obj_function, paramRange);
% 训练最终模型
best_params = decode_params(best_pos, paramRange);
model = fitensemble(X_train, y_train, 'LightGBM', n_estimators', best_params.n_estimators, ...
'LearningRate', best_params.learning_rate, ...
'NumLeaves', best_params.num_leaves, ...
'MaxDepth', best_params.max_depth, ...
'MinLeafSize', best_params.min_child_samples);
% 模型预测
y_pred = predict(model, X_test);
% 评估模型性能
accuracy = sum(y_pred == y_test) / numel(y_test);
fprintf('Test Accuracy: %f\n', accuracy);
5. 实验结果与分析
本文使用公开的UCI数据集(如Breast Cancer Wisconsin dataset)进行了实验验证。实验结果表明,经过WOA优化后的LightGBM模型相较于默认参数的LightGBM模型,在测试集上的分类准确率有了显著提升。此外,通过绘制收敛曲线,可以观察到WOA算法在迭代过程中逐渐收敛到最优解。
6. 结论与展望
本文提出了一种基于WOA算法优化的LightGBM分类预测方法,该方法利用WOA的全局寻优能力,有效地提升了LightGBM模型在特定数据集上的性能。实验结果表明,该方法相较于传统的LightGBM模型具有明显的性能优势,能够为实际的分类预测问题提供一种高效可靠的解决方案。
未来的工作可以考虑以下几个方向:
-
扩展优化目标: 将更多的LightGBM超参数纳入优化范围,进一步提升模型性能。
-
引入其他优化算法: 尝试使用其他元启发式优化算法,比较不同优化算法的性能。
-
应用于实际问题: 将该方法应用于更复杂的实际分类预测问题,并进行实践验证。
-
探索更高级的LightGBM用法: 研究LightGBM在分布式环境下的应用,以及其对于不同类型数据的适应性。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制
🌿 往期回顾可以关注主页,点击搜索
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇