【子采样延迟估计】周期信号的基于相关性的子采样时延估计方法的比较研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

时延估计作为信号处理领域的重要组成部分,在雷达、声呐、通信、医学成像以及地球物理勘探等领域都发挥着至关重要的作用。时延估计旨在精确确定两个或多个信号之间的时间差,从而可以用于定位、同步、跟踪以及信号重构等方面。在诸多应用场景中,待处理的信号常常呈现周期性特征,例如雷达回波信号、语音信号的基音周期、以及同步时钟信号等。针对周期信号的时延估计问题,传统方法包括广义互相关(Generalized Cross Correlation, GCC)方法、最小均方误差(Least Mean Square, LMS)方法以及最大似然估计(Maximum Likelihood Estimation, MLE)方法等。然而,在实际应用中,由于采样速率的限制,实际采样点往往不能精确对应到信号的峰值或特征点,导致传统时延估计方法的精度受到限制,产生较大的误差。为了克服这一问题,亚采样时延估计方法应运而生。亚采样时延估计方法的目标是在采样间隔小于信号特征周期的情况下,实现比采样周期更高的时延估计精度。

本文将着重研究基于相关性的周期信号亚采样时延估计方法,并对几种典型的算法进行比较分析。基于相关性的方法是时延估计领域中最常用的方法之一,其基本思想是通过计算两个信号之间的相关函数,找到相关函数的峰值位置,并将峰值位置作为时延的估计值。对于周期信号而言,其自相关函数也呈现周期性,因此基于相关性的方法能够有效捕获信号的周期性特征,并利用这些特征进行亚采样时延估计。

1. 基于插值的互相关方法

最简单的亚采样时延估计方法是在计算互相关函数之后,通过插值技术对互相关函数进行平滑,从而提高峰值位置的估计精度。常见的插值方法包括线性插值、二次插值、三次样条插值等。

  • 线性插值:

     计算简单,但精度较低,尤其是在峰值附近,线性插值会导致较大的误差。

  • 二次插值:

     可以更好地逼近互相关函数的真实形状,精度较线性插值有所提高,但计算量相对较大。

  • 三次样条插值:

     能够提供更高的平滑性和精度,但计算复杂度也更高,且容易受到噪声的影响。

基于插值的互相关方法的优点在于实现简单,易于理解和应用。然而,这种方法仅仅是对互相关函数进行简单的平滑处理,并没有充分利用周期信号的先验信息,因此在噪声环境下,其性能可能会受到限制。

2. 基于模型匹配的互相关方法

为了充分利用周期信号的先验信息,一些研究人员提出了基于模型匹配的互相关方法。该方法首先假设一个周期信号的模型,例如正弦信号模型或脉冲序列模型,然后通过将互相关函数与该模型进行匹配,估计出模型的参数,进而推导出亚采样时延。

  • 正弦模型匹配:

     适用于近似于正弦波的周期信号。通过估计互相关函数中的正弦成分的频率、幅度和相位,可以较为精确地估计出时延。

  • 脉冲序列模型匹配:

     适用于脉冲形状的周期信号。通过检测互相关函数中的脉冲峰值的位置和宽度,可以估计出时延。

基于模型匹配的互相关方法可以有效地利用周期信号的先验信息,提高时延估计的精度。然而,这种方法的性能严重依赖于模型的选择。如果选择的模型与实际信号的特征不匹配,则可能会导致较大的误差。此外,模型参数的估计也需要一定的计算量。

3. 基于分数傅里叶变换的互相关方法

分数傅里叶变换(Fractional Fourier Transform, FrFT)是一种广义的傅里叶变换,它能够将信号在时频平面内旋转任意角度。基于分数傅里叶变换的互相关方法利用FrFT将两个信号变换到最佳的时频平面,使得信号的互相关函数更加集中,从而提高亚采样时延估计的精度。

具体而言,该方法首先对两个信号进行FrFT变换,然后计算FrFT变换域的互相关函数,找到互相关函数的峰值位置,并通过逆FrFT变换将峰值位置转换回时域,得到亚采样时延的估计值。FrFT变换的角度是该方法的一个关键参数,需要根据信号的特征进行优化选择。

基于分数傅里叶变换的互相关方法具有较强的抗噪声能力,能够在低信噪比条件下获得较高的时延估计精度。然而,FrFT变换的计算量较大,且需要进行参数优化,因此其计算复杂度相对较高。

4. 基于希尔伯特变换的包络时延估计方法

对于周期信号,可以通过希尔伯特变换计算其解析信号的包络。包络包含了信号的幅度信息,而包络的时延则可以反映信号的真实时延。因此,可以通过计算两个信号的包络之间的互相关函数,估计出亚采样时延。

具体而言,该方法首先对两个周期信号进行希尔伯特变换,得到它们的解析信号。然后,计算解析信号的包络,并通过互相关函数估计包络的时延。由于包络通常是慢变的,因此可以通过较低的采样率来计算互相关函数,从而降低计算量。

基于希尔伯特变换的包络时延估计方法能够有效地抑制噪声的影响,并且具有较低的计算复杂度。然而,该方法的精度受到希尔伯特变换的精度的影响,并且对于非周期信号的适用性较差。

5. 总结与比较

上述几种基于相关性的周期信号亚采样时延估计方法各有优缺点。

  • 基于插值的互相关方法:

     实现简单,计算量小,但精度较低,抗噪声能力较弱。

  • 基于模型匹配的互相关方法:

     能够有效利用周期信号的先验信息,提高时延估计的精度,但性能依赖于模型的选择,且模型参数估计需要一定的计算量。

  • 基于分数傅里叶变换的互相关方法:

     具有较强的抗噪声能力,能够在低信噪比条件下获得较高的时延估计精度,但计算量较大,且需要进行参数优化。

  • 基于希尔伯特变换的包络时延估计方法:

     能够有效地抑制噪声的影响,并且具有较低的计算复杂度,但精度受到希尔伯特变换的精度的影响,且对于非周期信号的适用性较差。

在实际应用中,应根据具体情况选择合适的亚采样时延估计方法。例如,在对计算复杂度要求较高,且对精度要求不高的场合,可以选择基于插值的互相关方法。在已知信号的周期性特征较为明显,且对精度要求较高的场合,可以选择基于模型匹配的互相关方法。在低信噪比环境下,可以选择基于分数傅里叶变换的互相关方法。

未来研究方向

尽管已经涌现出许多基于相关性的周期信号亚采样时延估计方法,但仍然存在一些值得深入研究的方向:

  • 自适应模型匹配:

     如何根据信号的特征自适应地选择合适的模型,从而提高模型匹配方法的鲁棒性。

  • FrFT参数优化:

     如何更有效地优化FrFT变换的角度,使其能够更好地适应不同的信号特征。

  • 深度学习方法:

     如何利用深度学习技术来学习信号的特征,并构建更加精确的亚采样时延估计模型。

  • 多方法融合:

     如何将不同的亚采样时延估计方法进行融合,从而充分利用各种方法的优点,提高整体的性能。

总而言之,基于相关性的周期信号亚采样时延估计方法是一个活跃且富有挑战性的研究领域。随着信号处理技术的不断发展,相信未来将会涌现出更多高效、鲁棒的亚采样时延估计方法,为各种应用场景提供更加精确的时延信息。

⛳️ 运行结果

🔗 参考文献

[1] 沈国清,安连锁,姜根山,等.电站锅炉声学测温中时间延迟估计的仿真研究[J].中国电机工程学报, 2007, 27(11):5.DOI:10.3321/j.issn:0258-8013.2007.11.011.

[2] 行鸿彦,刘照泉,万明习.基于小波变换的广义相关时延估计算法[J].声学学报, 2002, 27(1):6.DOI:CNKI:SUN:XIBA.0.2002-01-016.

[3] 李大卫,尹成,马洪艳.时间延迟估计的循环相关法[J].西安石油大学学报:自然科学版, 2005, 20(2):4.DOI:10.3969/j.issn.1673-064X.2005.02.017.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值