✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
随着现代智能电网的快速发展,电能质量(Power Quality, PQ)问题日益突出,对电力系统的稳定运行和终端用户的可靠供电构成了严重威胁。准确、高效地识别和分类各类电能质量干扰(Power Quality Disturbances, PQDs)是保障智能电网安全、可靠运行的关键。本文深入探讨了机器学习(Machine Learning, ML)技术与离散小波变换(Discrete Wavelet Transform, DWT)在智能电网电能质量分类中的应用,并着重阐述了构建鲁棒分类器以应对复杂电网环境中各种干扰和噪声的能力。通过结合DWT强大的特征提取能力和ML算法卓越的模式识别能力,可以显著提高电能质量分类的准确性和鲁棒性,为智能电网的健康发展提供有力支撑。
关键词: 智能电网;电能质量;电能质量干扰;机器学习;离散小波变换;鲁棒分类器;特征提取;模式识别
引言
电力系统正经历着从传统电网向智能电网的深刻转型。智能电网集成了先进的通信、控制和传感技术,提高了电力系统的自动化、互动性和灵活性。然而,随之而来的挑战也日益凸显,其中电能质量问题是影响智能电网运行稳定性和供电可靠性的重要因素之一。电能质量干扰的表现形式多样,包括电压暂降、电压暂升、中断、谐波、间谐波、闪变、缺口以及各种组合形式等。这些干扰可能导致敏感设备误动作、损坏,影响工业生产和居民生活,甚至引发系统性故障。
传统电能质量分析方法主要依赖于傅里叶变换(Fourier Transform)或短时傅里叶变换(Short-Time Fourier Transform, STFT)。然而,这些方法在处理非稳态信号(如电能质量干扰信号)时存在局限性。傅里叶变换只能提供信号的全局频谱信息,无法捕捉时域局部特征,而STFT虽然引入了时域分析,但存在固定的时频窗口,无法在时间和频率分辨率之间实现最佳权衡。电能质量干扰往往具有突发性、瞬态性和非周期性等特点,需要一种能够同时在时域和频域对信号进行有效分析的工具。
近年来,随着人工智能技术的飞速发展,机器学习在各个领域展现出强大的应用潜力。在电能质量领域,机器学习算法能够从海量数据中学习复杂的模式和规律,为电能质量干扰的自动识别和分类提供了新的思路和方法。然而,原始电能质量信号通常是高维的、噪声化的,直接应用于机器学习算法可能会导致分类性能下降。因此,需要一种有效的特征提取技术来降低数据维度、滤除噪声并突出关键信息。
离散小波变换作为一种多分辨率分析工具,能够在不同尺度上对信号进行分析,同时提供时间和频率的局部信息。与傅里叶变换和STFT相比,DWT更适合分析非稳态信号,能够有效地捕捉电能质量干扰的瞬态特征。因此,将DWT与ML技术相结合,利用DWT提取电能质量信号的有效特征,再将这些特征输入到ML分类器中进行学习和分类,成为构建高效、鲁棒电能质量分类器的重要途径。
本文旨在探讨基于机器学习和离散小波变换的智能电网电能质量分类技术,重点关注如何构建鲁棒分类器以应对复杂的电网环境和各种干扰因素。文章将首先概述电能质量干扰的常见类型及对智能电网的影响,然后详细阐述DWT在电能质量信号特征提取中的原理和优势,接着深入探讨不同的机器学习算法在电能质量分类中的应用,并分析如何将DWT提取的特征与ML算法相结合以提高分类性能。最后,本文将讨论构建鲁棒分类器的关键挑战和潜在解决方案,并展望未来的研究方向。
一、 电能质量干扰及其对智能电网的影响
电能质量是指电网向用户提供的电能应具备的特性,主要包括电压、频率和波形等参数。理想的电能应是标准的正弦波,电压和频率稳定。然而,在实际电力系统中,由于各种因素的影响,电能质量经常受到干扰,偏离理想状态。常见的电能质量干扰类型包括:
- 电压暂降 (Voltage Sag):
电压在短时间内降低到标称值的10%到90%之间。
- 电压暂升 (Voltage Swell):
电压在短时间内升高到标称值的110%到180%之间。
- 中断 (Interruption):
电压在短时间内完全消失。
- 谐波 (Harmonics):
电压或电流波形中包含基波频率整数倍的频率分量。
- 间谐波 (Interharmonics):
电压或电流波形中包含基波频率非整数倍的频率分量。
- 闪变 (Flicker):
电压波形中包含的低频波动,导致灯光亮度变化。
- 缺口 (Notching):
电压或电流波形中由于电力电子开关设备的快速切换而产生的瞬时凹陷。
- 振荡瞬变 (Oscillatory Transient):
由开关操作或故障引起的,衰减的振荡波形。
- 脉冲瞬变 (Impulsive Transient):
由雷击或开关操作引起的,快速上升和衰减的脉冲波形。
- 组合干扰 (Combined Disturbances):
同时存在两种或多种电能质量干扰。
这些电能质量干扰对智能电网及其连接的设备产生了广泛的影响:
- 敏感设备误动作或损坏:
现代电子设备对电能质量的要求越来越高,电压暂降、暂升和中断可能导致计算机、自动化设备、医疗设备等敏感设备停机或损坏。
- 电力系统运行不稳定:
谐波会引起变压器过热、电容器损坏、继电保护误动等问题,影响电网的稳定运行。
- 降低电力系统效率:
谐波和不平衡会增加线路损耗,降低电力系统的传输效率。
- 影响可再生能源并网:
光伏、风电等可再生能源并网可能引入新的电能质量问题,需要有效的监测和控制。
- 智能电网功能受限:
电能质量问题会影响智能电网中各种传感、通信和控制设备的正常工作,限制智能电网功能的发挥。
因此,对电能质量干扰进行准确、快速的识别和分类,并及时采取措施进行治理,是保障智能电网安全、可靠运行的迫切需求。
二、 离散小波变换(DWT)在电能质量信号特征提取中的应用
电能质量干扰信号通常是非稳态信号,其特征在时域和频域都随时间变化。传统的时域分析方法(如均方根值、峰值等)和频域分析方法(如傅里叶变换)在处理非稳态信号时存在局限性。离散小波变换作为一种多分辨率分析工具,能够克服这些局限性。
DWT的基本思想是将信号分解成一系列不同尺度(频率)和位置(时间)的小波系数。通过选择不同的小波基函数(Wavelet Basis Function),可以对信号进行不同方式的分解。小波基函数具有良好的时域和频域局部性,能够有效地捕捉信号的瞬态特征。
在电能质量信号分析中,DWT通常采用多层分解的方式。原始信号经过一系列高通滤波器和低通滤波器组分解成不同尺度的近似系数(Approximation Coefficients)和细节系数(Detail Coefficients)。近似系数代表信号的低频成分,而细节系数代表信号的高频成分。电能质量干扰往往表现为信号的瞬态变化或高频谐波成分,这些特征通常包含在不同尺度的细节系数中。
利用DWT进行电能质量信号特征提取的步骤通常包括:
- 选择合适的小波基函数:
选择具有与电能质量干扰相似形状的小波基函数可以提高分解效果。常用的母小波包括Daubechies小波、Symlets小波、Coiflets小波等。
- 确定分解层数:
分解层数取决于信号的特点和所需的分辨率。通常根据信号的采样频率和感兴趣的频率范围来确定分解层数。
- 进行多层DWT分解:
将原始电能质量信号进行多层DWT分解,得到不同尺度的近似系数和细节系数。
- 提取特征:
从不同尺度的细节系数和/或近似系数中提取能够反映电能质量干扰特征的量化指标。常用的特征包括:
- 能量特征:
计算不同尺度细节系数或近似系数的能量。电能质量干扰通常会导致特定尺度系数的能量发生变化。
- 方差特征:
计算不同尺度系数的方差,反映信号在该尺度上的波动程度。
- 熵特征:
利用小波系数的分布计算熵,反映信号在该尺度上的复杂度和随机性。
- 峰值特征:
提取不同尺度系数的峰值或峰值所在的时刻,捕捉瞬态干扰的发生。
- 零交叉率:
计算不同尺度系数的零交叉率,反映信号在该尺度上的频率特性。
- 能量特征:
DWT在电能质量信号特征提取方面的优势在于:
- 多分辨率分析:
能够同时在时域和频域对信号进行分析,捕捉瞬态特征。
- 特征局部性:
小波系数能够反映信号在特定时间段和频率范围内的特性。
- 降噪能力:
可以通过阈值处理等方法对小波系数进行处理,滤除噪声,提高特征的鲁棒性。
- 数据压缩:
可以选择重要的特征进行表示,降低数据维度,提高后续机器学习算法的效率。
通过DWT提取的有效特征能够更准确地反映不同类型电能质量干扰的本质特性,为后续的机器学习分类奠定坚实基础。
三、 机器学习在电能质量分类中的应用
机器学习算法能够从数据中学习模式,并利用这些模式对未知数据进行分类或预测。在电能质量分类领域,机器学习可以利用带有标签的电能质量干扰数据训练分类模型,然后使用训练好的模型对新的电能质量信号进行自动分类。
常用的机器学习算法在电能质量分类中的应用包括:
- 支持向量机 (Support Vector Machine, SVM):
SVM是一种基于统计学习理论的分类算法,通过寻找最佳超平面将不同类别的样本分开。SVM在处理高维数据和小样本问题方面表现优异,适合对DWT提取的高维特征进行分类。
- 人工神经网络 (Artificial Neural Network, ANN):
ANN是一种模仿生物神经系统结构的计算模型,通过多个神经元之间的连接和权重调整来实现学习和分类。BP神经网络、卷积神经网络(Convolutional Neural Network, CNN)和循环神经网络(Recurrent Neural Network, RNN)等不同类型的ANN都可以应用于电能质量分类。CNN特别适合处理具有空间或时间相关性的数据,可以用于直接从原始信号或经过预处理的信号中提取特征并进行分类。
- 决策树 (Decision Tree):
决策树是一种基于树状结构的分类算法,通过一系列判断规则将样本分到不同的类别。决策树易于理解和解释,但可能存在过拟合问题。
- 随机森林 (Random Forest):
随机森林是一种集成学习算法,通过构建多个决策树并将它们的预测结果进行组合来提高分类性能。随机森林具有较好的鲁棒性和泛化能力。
- K-近邻 (K-Nearest Neighbors, KNN):
KNN是一种基于实例的分类算法,通过计算待分类样本与训练集中样本的距离,将其归类到与其最近的K个样本所属类别最多的类别。KNN算法简单易实现,但计算量较大。
- 朴素贝叶斯 (Naive Bayes):
朴素贝叶斯是一种基于贝叶斯定理的概率分类算法,假设特征之间相互独立。朴素贝叶斯算法简单高效,适用于高维数据。
将DWT提取的特征输入到这些机器学习算法中,可以构建不同的电能质量分类器。通过对分类器进行训练和优化,可以提高分类的准确性和速度。机器学习在电能质量分类中的优势在于:
- 自动化分类:
机器学习模型可以实现电能质量干扰的自动识别和分类,减少人工干预。
- 模式学习:
机器学习算法能够从大量数据中学习复杂的电能质量干扰模式,提高分类的准确性。
- 适应性:
机器学习模型可以通过重新训练来适应新的电网环境和干扰类型。
- 处理复杂干扰:
机器学习算法对组合干扰等复杂情况具有较好的处理能力。
四、 基于DWT和ML的鲁棒电能质量分类器构建
构建鲁棒的电能质量分类器是应对复杂智能电网环境的关键。鲁棒性意味着分类器在存在噪声、干扰、数据缺失或样本不平衡等不利因素时,仍能保持较高的分类准确性。将DWT与ML相结合,可以有效提高电能质量分类器的鲁棒性。
构建基于DWT和ML的鲁棒电能质量分类器的关键环节包括:
-
高质量数据采集和预处理: 采集包含各种典型和非典型电能质量干扰的样本数据,并进行必要的预处理,如滤波、降噪、归一化等,以提高数据质量。
-
DWT特征提取的优化: 深入研究不同小波基函数、分解层数以及特征提取方法对分类性能的影响,选择最优的DWT参数和特征集。可以考虑采用多尺度特征融合等技术进一步提高特征的表达能力。
-
机器学习算法的选择与优化: 针对电能质量分类的特点,选择合适的机器学习算法,并对算法的参数进行优化。可以尝试集成学习、深度学习等更高级的机器学习技术。
-
鲁棒性增强技术应用: 在机器学习模型的训练过程中,采用一些鲁棒性增强技术,例如:
- 数据增强:
通过对原始数据进行适当的变换(如添加噪声、改变幅值、时移等)来扩充训练数据集,提高模型对数据变化的鲁棒性。
- 正则化技术:
在模型训练过程中引入正则化项,防止模型过拟合,提高泛化能力。
- 集成学习:
结合多个弱分类器的结果,构建更强的鲁棒分类器。
- 抗噪声损失函数:
使用对噪声不敏感的损失函数进行模型优化。
- 特征选择和降维:
识别和去除对分类不重要的冗余或噪声特征,提高模型的效率和鲁棒性。
- 数据增强:
-
分类模型的评估与验证: 使用独立的测试数据集对训练好的分类模型进行全面评估,常用的评估指标包括准确率、精确率、召回率、F1分数以及混淆矩阵等。特别关注分类器在不同噪声水平和干扰类型下的性能表现。
-
实时性和可部署性考虑: 在实际应用中,需要考虑分类器的实时性要求,选择计算效率高的DWT特征提取方法和机器学习算法。同时,需要考虑分类模型在嵌入式系统或边缘计算设备上的部署能力。
通过上述环节的优化和技术的应用,可以构建一个能够在复杂智能电网环境中准确、鲁棒地识别和分类电能质量干扰的高级分类器。例如,可以利用DWT对电压或电流信号进行多层分解,提取不同尺度的能量、方差、熵等特征,然后将这些特征输入到一个优化的SVM或ANN分类器中进行训练和分类。为了提高鲁棒性,可以在训练数据中加入不同幅值和频率的噪声,并采用交叉验证等方法评估模型的泛化能力。
五、 挑战与未来研究方向
尽管基于DWT和ML的电能质量分类技术取得了显著进展,但仍面临一些挑战和未来研究方向:
- 数据获取和标注的困难:
智能电网中电能质量干扰的发生具有随机性和突发性,难以获取大量不同类型、不同幅值和不同持续时间的典型和非典型干扰样本。同时,对干扰样本进行准确的人工标注需要专业的知识和大量的时间。未来需要发展更高效的数据采集技术和半监督学习、无监督学习等方法来缓解数据不足和标注困难的问题。
- 复杂组合干扰的识别:
实际电网中经常出现多种电能质量干扰同时发生的情况,这些组合干扰的特征更加复杂,对分类器的识别能力提出了更高要求。未来的研究需要更深入地分析组合干扰的特性,并发展能够有效处理组合干扰的特征提取和分类方法。
- 在线实时分类的需求:
智能电网对电能质量分类的实时性要求较高,需要快速准确地识别和分类干扰,以便及时采取控制措施。未来的研究需要探索更高效的特征提取算法和计算量较小的机器学习模型,以满足在线实时应用的需求。
- 鲁棒性在不同噪声环境下的评估:
电网环境复杂多变,噪声来源和特性各不相同。未来的研究需要系统地评估分类器在不同类型和水平的噪声环境下的鲁棒性,并发展更具通用性的抗噪声技术。
- 可解释性和可信度:
某些高级机器学习模型(如深度学习)可能缺乏可解释性,难以理解其决策过程。在电力系统中,对分类结果的可解释性非常重要,有助于故障诊断和原因分析。未来的研究需要探索更具可解释性的机器学习模型或开发解释模型决策过程的方法。
- 边缘计算和分布式部署:
随着智能电网的分布式发展,将电能质量分类功能部署在智能终端或边缘计算设备上具有重要意义。未来的研究需要考虑模型在资源受限环境下的计算效率和内存占用。
- 与其他智能电网技术的融合:
将电能质量分类技术与故障诊断、预测性维护、优化调度等其他智能电网技术相结合,可以构建更全面的智能电网监控和控制系统。
结论
本文深入探讨了基于机器学习和离散小波变换的智能电网电能质量分类技术。DWT作为一种强大的特征提取工具,能够有效地捕捉电能质量干扰的时频特性,为机器学习算法提供了高质量的输入特征。结合不同的机器学习算法,可以构建高效的电能质量分类器。通过采用鲁棒性增强技术,可以显著提高分类器在复杂电网环境和噪声干扰下的性能。
尽管面临一些挑战,但机器学习和DWT在电能质量分类领域的应用前景广阔。未来的研究应着力于解决数据获取和标注、复杂组合干扰识别、在线实时性、鲁棒性评估、模型可解释性以及与其他智能电网技术的融合等问题。随着技术的不断发展和完善,基于机器学习和DWT的高级电能质量分类器将为智能电网的健康发展提供更坚实的技术保障,提高电力系统的可靠性、稳定性和效率。
⛳️ 运行结果
🔗 参考文献
[1] 张凯德.多分类器动态集成技术研究及其应用[D].大连理工大学,2011.
[2] 欧吉顺.多分类器动态集成技术研究[D].江苏大学[2025-04-26].DOI:10.7666/d.y1669889.
[3] 杨晶.基于机器学习的电力系统状态辨识及预防控制[D].太原理工大学,2023.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇