【状态估计】用于磁针状态估计的 EKF 和 UKF 模型附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

磁针作为一种重要的导航和姿态测量工具,在航空、航海、机器人以及地质勘探等领域有着广泛应用。然而,由于外部磁场干扰、传感器噪声以及模型不确定性等因素,磁针的测量结果往往不够精确。为了提高磁针状态估计的精度和鲁棒性,本文深入研究了扩展卡尔曼滤波器 (EKF) 和无迹卡尔曼滤波器 (UKF) 在磁针状态估计中的应用。通过详细阐述 EKF 和 UKF 的基本原理、推导过程及其在非线性系统中的适用性,并结合磁针的运动学和观测模型,构建了相应的状态估计算法。理论分析和仿真结果表明,EKF 能够对非线性系统进行有效估计,但其性能受线性化误差影响;而 UKF 则通过确定性采样策略更好地逼近非线性变换,展现出更高的估计精度和鲁棒性。本文的分析为磁针高精度状态估计提供了理论依据和技术支持。

关键词

磁针;状态估计;扩展卡尔曼滤波器 (EKF);无迹卡尔曼滤波器 (UKF);非线性系统

1. 引言

磁针,作为一种基于地磁场原理工作的传感器,以其结构简单、成本低廉、功耗低等优点,在惯性导航系统、姿态测量系统以及各种移动平台中扮演着不可或缺的角色。磁针测量的核心在于通过感知地球磁场矢量来确定自身相对于磁北极的方向。然而,实际应用中,磁针的测量精度常常受到多种因素的制约。首先,地磁场本身并非完全均匀,会受到局部磁异常、铁磁性物质以及电流等因素的干扰。其次,磁针传感器本身存在固有的噪声和误差,例如偏置、标度因子误差以及随机噪声。最后,磁针的运动往往是非线性的,例如在飞行器或车辆中,磁针可能会经历复杂的旋转和加速度,使得其状态(如航向、俯仰、滚转)难以直接通过静态模型精确描述。

为了克服上述挑战,实现对磁针状态的精确估计,状态估计算法显得尤为重要。卡尔曼滤波器 (Kalman Filter, KF) 作为一种最优线性估计器,在处理线性系统和高斯噪声方面表现出色。然而,当系统模型呈现非线性特性时,传统的卡尔曼滤波器便不再适用。对于磁针这类典型的非线性系统,需要采用能够处理非线性问题的估计算法。扩展卡尔曼滤波器 (EKF) 和无迹卡尔曼滤波器 (UKF) 是两种广泛应用于非线性状态估计的有效方法。EKF 通过对非线性系统进行局部线性化来近似处理,而 UKF 则采用确定性采样策略来更准确地逼近非线性变换。本文旨在深入探讨这两种滤波器在磁针状态估计中的应用,并通过理论分析和可能的仿真验证,比较其性能优劣,为实际工程应用提供参考。

2. 磁针状态估计的理论基础

磁针的状态估计本质上是一个根据带有噪声的观测数据,推断系统内部不可直接测量的状态变量的问题。

2.1 磁针运动学模型

图片

图片

2.2 磁针观测模型

图片

3. 扩展卡尔曼滤波器 (EKF) 在磁针状态估计中的应用

3.1 EKF 基本原理

扩展卡尔曼滤波器 (EKF) 是卡尔曼滤波器在非线性系统中的推广。其核心思想是在每个时间步长,将非线性系统模型和观测模型在当前估计状态附近进行局部线性化,然后利用线性化的模型进行卡尔曼滤波的预测和更新。

图片

图片

图片

3.2 EKF 在磁针状态估计中的具体实现

图片

4. 无迹卡尔曼滤波器 (UKF) 在磁针状态估计中的应用

4.1 UKF 基本原理

无迹卡尔曼滤波器 (UKF) 是一种基于无迹变换 (Unscented Transform, UT) 的非线性滤波器。与 EKF 的线性化不同,UKF 不进行雅可比矩阵的计算,而是通过选择一组确定性采样的 Sigma 点来捕捉状态分布的均值和协方差,然后将这些 Sigma 点通过非线性函数传播,再根据传播后的 Sigma 点重新估计均值和协方差。这种方法避免了线性化带来的误差,尤其在高度非线性系统中表现出更好的性能。

图片

图片

图片

图片

4.2 UKF 在磁针状态估计中的具体实现

图片

在 UKF 中,处理四元数等流形上的变量时需要特别注意。标准的 UKF 假设状态在欧氏空间中,但四元数具有单位范数约束。一种常见的处理方法是使用增广状态(例如,包括角速度偏差),并将四元数表示为三维旋转矢量,然后通过指数映射和对数映射在欧氏空间和 SO(3) 之间进行转换。另一种方法是在 UKF 的 Sigma 点传播过程中,对每个传播后的四元数进行归一化处理,以确保其单位范数。

5. 结论

本文深入探讨了扩展卡尔曼滤波器 (EKF) 和无迹卡尔曼滤波器 (UKF) 在磁针状态估计中的应用。通过对磁针运动学和观测模型的构建,详细阐述了 EKF 和 UKF 的基本原理、算法流程以及在磁针状态估计中的具体实现方法。理论分析表明,EKF 通过局部线性化处理非线性,计算效率较高,但受线性化误差影响;而 UKF 则通过确定性采样策略更准确地逼近非线性变换,展现出更高的估计精度和鲁棒性,尤其适用于强非线性系统。

未来的研究工作可以包括:

  1. 实际数据验证:

     将 EKF 和 UKF 算法应用于真实的磁针测量数据,并与高精度参考系统进行对比,以全面评估其在实际环境中的性能。

  2. 多传感器融合:

     结合磁力计、加速度计、陀螺仪等多源传感器数据,通过融合算法进一步提高磁针状态估计的精度和鲁棒性。

  3. 自适应滤波:

     研究自适应 EKF 或 UKF 算法,以应对噪声统计特性未知或变化的情况。

  4. 计算优化:

     针对 UKF 较高的计算量,探索更高效的 Sigma 点生成和传播方法,或者结合硬件加速技术,以满足实时性要求。

⛳️ 运行结果

图片

图片

图片

图片

🔗 参考文献

[1] 杨宝臣,苏云鹏,李玲珍.基于EKF与UKF的利率期限结构模型估计及对比[J].系统管理学报, 2009, 18(3):7.DOI:CNKI:SUN:XTGL.0.2009-03-016.

[2] 陈伟利,李颢.基于"当前"模型的UKF滤波算法在目标跟踪与实时弹道估计中的应用[J].导弹试验技术, 2008.

[3] 吴忠强,尚梦瑶,申丹丹,等.基于神经网络和MS-AUKF算法的蓄电池荷电状态估计[J].中国电机工程学报, 2019, 39(21):8.DOI:10.13334/j.0258-8013.pcsee.181720.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值