【状态估计】基于同步相量测量单元(PMU)的电力系统状态估计(Matlab实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

 随着电力系统的不断发展和对可靠性要求的提高,精确的电力系统状态估计变得至关重要。同步相量测量单元(PMU)的出现为电力系统状态估计带来了新的机遇。 PMU 能够以高采样率准确测量电力系统中的电压和电流相量,提供了同步、实时的测量数据。基于 PMU 的电力系统状态估计具有以下几个主要特点和优势:

一、高精度测量:PMU 的高精度相量测量使得状态估计结果更加准确可靠。与传统的测量设备相比,PMU 能够捕捉到电力系统的动态变化,对系统的实时状态进行更精确的描述。

二、同步测量:PMU 可以实现同步测量,即不同地点的测量数据在时间上是同步的。这对于电力系统的状态估计非常重要,因为它能够准确反映系统在同一时刻的状态,有助于更好地分析系统的稳定性和动态特性。

三、广域测量: PMU 可以分布在电力系统的各个关键位置,实现广域测量。通过广域测量,能够获取整个电力系统的全局信息,从而更好地了解系统的整体运行状态,为状态估计提供更全面的数据支持。

四、状态估计方法:基于 PMU 的电力系统状态估计方法通常结合了传统的状态估计技术和 PMU 的特殊测量特性。常见的方法包括卡尔曼滤波及其变体、最小二乘法等。这些方法利用 PMU 提供的实时相量数据,对电力系统的电压幅值、相角、有功功率和无功功率等状态变量进行估计。

五、应用领域:基于 PMU 的电力系统状态估计在多个领域具有重要应用。例如,在电力系统运行控制中,可以用于实时监测系统状态、优化潮流分布、提高系统的稳定性和可靠性。在故障诊断和分析中,能够快速准确地确定故障位置和类型,为故障恢复提供依据。此外,还可以用于电力系统规划和设计,评估系统的性能和可靠性。 总之,基于同步相量测量单元(PMU)的电力系统状态估计为电力系统的运行、控制和管理提供了更准确、更实时的状态信息,对于提高电力系统的可靠性和稳定性具有重要意义。

📚2 运行结果

部分函数代码:

function ybus = ybusppg(num)  % Returns ybus

linedata = linedatas(num); % Calling "linedata6.m" for Line Data...
fb = linedata(:,1);     % From bus number...
tb = linedata(:,2);     % To bus number...
r = linedata(:,3);      % Resistance, R...
x = linedata(:,4);      % Reactance, X...
b = linedata(:,5);      % Ground Admittance, B/2...
a = linedata(:,6);      % Tap setting value..
z = r + i*x;            % Z matrix...
y = 1./z;               % To get inverse of each element...
b = i*b;                % Make B imaginary...

nbus = max(max(fb),max(tb));    % no. of buses...
nbranch = length(fb);           % no. of branches...
ybus = zeros(nbus,nbus);        % Initialise YBus...
 
 % Formation of the Off Diagonal Elements...
 for k=1:nbranch
     ybus(fb(k),tb(k)) = ybus(fb(k),tb(k))-y(k)/a(k);
     ybus(tb(k),fb(k)) = ybus(fb(k),tb(k));
 end
 
 % Formation of Diagonal Elements....
 for m =1:nbus
     for n =1:nbranch
         if fb(n) == m
             ybus(m,m) = ybus(m,m) + y(n)/(a(n)^2) + b(n);
         elseif tb(n) == m
             ybus(m,m) = ybus(m,m) + y(n) + b(n);
         end
     end
 end

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]陈光佳,张镇勇,焦绪国,等.面向电力系统多重扰动的鲁棒动态状态估计方法[J].控制工程,2024,31(11):2045-2053.DOI:10.14107/j.cnki.kzgc.20230573.

[2]张静,毕天姝,刘灏.电力系统状态估计精度综合评价与分析体系[J].电力系统保护与控制,2024,52(20):12-24.DOI:10.19783/j.cnki.pspc.240567.

🌈4 Matlab代码实现

图片

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值